設a>0,f(x)=
ex
a
+
a
ex
是R上的偶函數(shù).
(1)求a的值;
(2)證明f(x)在(0,+∞)上為增函數(shù).
分析:(1)根據(jù)偶函數(shù)的定義f(-x)=f(x)即可得到答案.
(2)用定義法設0<x1<x2,代入作差可得.
解答:解:(1)依題意,對一切x∈R,有f(-x)=f(x),即
1
aex
+aex=
ex
a
+
a
ex

(a-
1
a
)(ex-
1
ex
)
=0對一切x∈R成立,則a-
1
a
=0
,∴a=±1,∵a>0,∴a=1.
(2)設0<x1<x2,則f(x1)-f(x2)=ex1-ex2+
1
ex1
-
1
ex2

=(ex2-ex1)(
1
ex1+x2
-1)=ex1(ex2-x1-1)
1-ex2+x1
ex2+x1
,
由x1>0,x2>0,x2-x1>0,
x1+x2>0,ex2-x1-1>0,
1-ex2+x1<0,
∴f(x1)-f(x2)<0,
即f(x1)<f(x2),∴f(x)在(0,+∞)上為增函數(shù).
點評:本題主要考查偶函數(shù)的定義和增函數(shù)的判斷方法.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設a>0,f(x)=
2x
a
+
a
2x
是R上的偶函數(shù).
(Ⅰ)求a的值;
(Ⅱ)證明:f(x)在(0,+∞)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設a>0,f(x)=
axa+x
a1=1,an+1=f(an),n∈N*

(1)寫出a2,a3,a4的值,并猜想數(shù)列{an}的通項公式;
(2)用數(shù)學歸納法證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設a>0,f(x)=
2x
a
-
a
2x
是R上的奇函數(shù).
(Ⅰ)求a的值;
(Ⅱ)證明:f(x)在R上為增函數(shù);
(Ⅲ)解不等式:f(1-m)+f(1-m2)<0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設a>0,函數(shù)f(x)=,b為常數(shù).

(1)證明:函數(shù)f(x)的極大值點和極小值點各有一個;

(2)若函數(shù)f(x)的極大值為1,極小值為-1,試求a的值.

查看答案和解析>>

同步練習冊答案