【題目】已知△ABC,若存在△A1B1C1 , 滿足 = = =1,則稱△A1B1C1是△ABC的一個“友好”三角形.在滿足下述條件的三角形中,存在“友好”三角形的是:(請寫出符合要求的條件的序號) ①A=90°,B=60°,C=30°;②A=75°,B=60°,C=45°;③A=75°,B=75°,C=30°;④A=75°,B=65°,C=45°.

【答案】②
【解析】解:①項,A=90°,cosA=0=sinA1 , A1=180°或0,不滿足三角形內(nèi)角和為180°的條件,故①項不符合條件; ②項,cosC=cos45°=sinC1 , 則C1=45°或135°;cosB=cos60°= =sinB1 , 則B1=30°或150°,
又三角形內(nèi)角和為180°,
∴△A1B1C1可能的組合是:
第一種情況A1=105°時,cosA=cos75°≠sin105°,這種情況不符合題意;
當?shù)诙N情況A1=15°,滿足滿足cosA=cos75°=sin15°,故②項符合條件;
③項,cosC=cos30°=sinC1 , 則C1=60°或120°,又A=B=75°,
∴A1=B1 ,
當C1=60時,A1=B1=C1=60°,
,即 ,不符合題意;
當C1=120°時,A1=B1=30°,則 ,即 ,故③項不符合條件;
由A+B+C≠180°,不能構(gòu)成三角形,故④項不符合條件;
所以答案是:②

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四棱錐P﹣ABCD中,底面ABCD是棱長為2的菱形,PA⊥平面ABCD,∠ABC=60°,E是BC中點,若H為PD上的動點,EH與平面PAD所成最大角的正切值為
(1)當EH與平面PAD所成角的正切值為 時,求證:EH∥平面PAB;
(2)在(1)的條件下,求二面角A﹣PB﹣C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一次歌手大獎賽上,七位評委為歌手打出的分數(shù)如下:9.4,8.4,9.4,9.9,9.6,9.4,9.7,去掉一個最高分和一個最低分后,所剩數(shù)據(jù)的平均值和方差分別為(
A.9.4,0.484
B.9.4,0.016
C.9.5,0.04
D.9.5,0.016

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}是等比數(shù)列,且滿足a2+a5=36,a3a4=128. (Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若數(shù)列{an}是遞增數(shù)列,且bn=an+log2an(n∈N*),求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】a,b為空間中兩條互相垂直的直線,等腰直角三角形ABC的直角邊AC所在直線與a,b都垂直,斜邊AB以直線AC為旋轉(zhuǎn)軸旋轉(zhuǎn),有下列結(jié)論:

當直線AB與a成60°角時,AB與b成30°角;

當直線AB與a成60°角時,AB與b成60°角;

直線AB與a所稱角的最小值為45°;

直線AB與a所稱角的最小值為60°;

其中正確的是________。(填寫所有正確結(jié)論的編號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,橢圓的左、右焦點分別為F1,F(xiàn)2,離心率為,兩準線之間的距離為8.點P在橢圓E上,且位于第一象限,過點F1作直線PF1的垂線l1,過點F2作直線PF2的垂線l2.

(1)求橢圓E的標準方程;

(2)若直線l1,l2的交點Q在橢圓E上,求點P的坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,若輸入S的值為﹣1,則輸出S的值為(

A.﹣1
B.
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】通過對某城市一天內(nèi)單次租用共享自行車的時間分鐘到鐘的人進行統(tǒng)計,按照租車時間 , , 分組做出頻率分布直方圖,并作出租用時間和莖葉圖(圖中僅列出了時間在, 的數(shù)據(jù)).

(1)求的頻率分布直方圖中的;

(2)從租用時間在分鐘以上(含分鐘)的人數(shù)中隨機抽取人,設(shè)隨機變量表示所抽取的人租用時間在內(nèi)的人數(shù),求隨機變量的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校舉行“青少年禁毒”知識競賽網(wǎng)上答題,高二年級共有500名學(xué)生參加了這次競賽.為了解本次競賽成績情況,從中抽取了100名學(xué)生的成績進行統(tǒng)計.請你解答下列問題:

(1)根據(jù)下面的頻率分布表和頻率分布直方圖,求出a+d和b+c的值;
(2)若成績不低于90分的學(xué)生就能獲獎,問所有參賽學(xué)生中獲獎的學(xué)生約為多少人?

分組

頻數(shù)

頻率

[60,70)

10

0.1

[70,80)

22

0.22

[80,90)

a

0.38

[90,100]

30

c

合計

100

d

查看答案和解析>>

同步練習(xí)冊答案