13、已知y=f(x)是R上的偶函數(shù),且f(x)在(-∞,0]上是增函數(shù),若f(a)≥f(2),則a的取值范圍是
[-2,2]
分析:利用偶函數(shù)在對(duì)稱區(qū)間上的單調(diào)性相反得到f(x)的單調(diào)性,利用單調(diào)性去掉抽象不等式的對(duì)應(yīng)f,解不等式得到解集.
解答:解:∵y=f(x)是R上的偶函數(shù),且在(-∞,0]上是增函數(shù)
∴y=f(x)在[0,+∞)是減函數(shù)
∵f(a)≥f(2),
∴|a|≤2
∴a∈[-2,2]
故答案為:[-2,2]
點(diǎn)評(píng):本題考查偶函數(shù)的單調(diào)性:對(duì)稱區(qū)間上的單調(diào)性相反;利用單調(diào)性解抽象不等式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

11、已知y=f(x)是R上的奇函數(shù),且x<0時(shí),f(x)=x+2x;則當(dāng)x>0時(shí),f(x)=
x-2-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知y=f(x)是R上的偶函數(shù),當(dāng)x≥0 時(shí),f(x)=x(x+1),當(dāng)x<0 時(shí),f(x)=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知y=f(x)是R上的可導(dǎo)函數(shù),對(duì)于任意的正實(shí)數(shù)t,都有函數(shù)g(x)=f(x+t)-f(x)在其定義域內(nèi)為減函數(shù),則函數(shù)y=f(x)的圖象可能為如圖中( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知y=f(x)是R上的增函數(shù),且f(2m)<f(9-m),則實(shí)數(shù)m的取值范圍是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案