已知雙曲線=1的離心率為2,焦點到漸近線的距離等于,過右焦點F2的直線l交雙曲線于A、B兩點,F(xiàn)1為左焦點.
(1)求雙曲線的方程;
(2)若△F1AB的面積等于6,求直線l的方程.

(1)x2=1(2)y=±(x-2)

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的焦距為,過右焦點和短軸一個端點的直線的斜率為,為坐標(biāo)原點.
(1)求橢圓的方程.
(2)設(shè)斜率為的直線相交于、兩點,記面積的最大值為,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系中,點P到兩圓C1與C2的圓心的距離之和等于4,其中C1,C2. 設(shè)點P的軌跡為
(1)求C的方程;
(2)設(shè)直線與C交于A,B兩點.問k為何值時?此時的值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知曲線E:ax2+by2=1(a>0,b>0),經(jīng)過點M的直線l與曲線E交于點A、B,且=-2.
(1)若點B的坐標(biāo)為(0,2),求曲線E的方程;
(2)若a=b=1,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線x2=4y的焦點為F,過焦點F且不平行于x軸的動直線交拋物線于A、B兩點,拋物線在A、B兩點處的切線交于點M.

(1)求證:A、M、B三點的橫坐標(biāo)成等差數(shù)列;
(2)設(shè)直線MF交該拋物線于C、D兩點,求四邊形ACBD面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,設(shè)E:=1(a>b>0)的焦點為F1與F2,且P∈E,∠F1PF2=2θ.求證:△PF1F2的面積S=b2tanθ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系xOy中,拋物線C的頂點在原點,經(jīng)過點A(2,2),其焦點F在x軸上.

(1)求拋物線C的標(biāo)準(zhǔn)方程;
(2)求過點F,且與直線OA垂直的直線的方程;
(3)設(shè)過點M(m,0)(m>0)的直線交拋物線C于D、E兩點,ME=2DM,記D和E兩點間的距離為f(m),求f(m)關(guān)于m的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的中心為坐標(biāo)原點O,橢圓短半軸長為1,動點M(2,t)(t>0)在直線x=(a為長半軸,c為半焦距)上.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求以O(shè)M為直徑且被直線3x-4y-5=0截得的弦長為2的圓的方程;
(3)設(shè)F是橢圓的右焦點,過點F作OM的垂線與以O(shè)M為直徑的圓交于點N,求證:線段ON的長為定值,并求出這個定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,兩條相交線段、的四個端點都在拋物線上,其中,直線的方程為,直線的方程為

(1)若,,求的值;
(2)探究:是否存在常數(shù),當(dāng)變化時,恒有?

查看答案和解析>>

同步練習(xí)冊答案