(本小題滿分12分)
已知橢圓的長軸長為4,離心率為,分別為其左右焦點.一動圓過點,且與直線相切.
(Ⅰ)(。┣髾E圓的方程; (ⅱ)求動圓圓心軌跡的方程;
(Ⅱ) 在曲線上有兩點,橢圓上有兩點,滿足共線,共線,且,求四邊形面積的最小值.
解:(Ⅰ)(。┯梢阎傻
則所求橢圓方程.          ------------------------2分
(ⅱ)由已知可得動圓圓心軌跡為拋物線,且拋物線的焦點為(1,0),準線方程為,則動圓圓心軌跡方程為.                  ----------------------------6分
(Ⅱ)當直線的斜率不存在時,,
此時的長即為橢圓長軸長,,從而     
設直線的斜率為,則,直線的方程為:
直線的方程為. 設
,消去可得
由拋物線定義可知:
   -------------------9分
消去,
從而      

,∵  ,則
因為  , 所以       
所以四邊形PMQN面積的最小值為8          ------------------------------12分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:填空題

一個圓柱形容器里裝有水,放在水平地面上,現(xiàn)將該容器傾斜,這時水面是一個橢圓面(如圖),當圓柱的母線與地面所成角時,橢圓的離心率是         

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

..(本題滿分16分)本題共有3個小題,第1小題滿分5分,第2小題滿分5分,第3小題滿分6分.
已知橢圓上有一個頂點到兩個焦點之間的距離分別為,
(1)求橢圓的方程;
(2)如果直線與橢圓相交于,若,證明直線與直線的交點必在一條確定的雙曲線上;
(3)過點作直線(與軸不垂直)與橢圓交于兩點,與軸交于點,若,,證明:為定值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若點P在以F1F2為焦點的橢圓上,PF2F1F2,,則橢圓的離心率為___________

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

橢圓的焦點在y軸上,一個焦點到長軸的兩端點的距離之比是1∶4, 短軸長為8, 則橢圓的標準方程是               ;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知、是橢圓上的三個動點,若右焦點的重心,則的值是
A.9B.7C.5D.3

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)已知橢圓C的中心在原點,對稱軸為坐標軸,且過
(Ⅰ)求橢圓C的方程,
(Ⅱ)直線交橢圓C與A、B兩點,求證:

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若P是以F1F2為焦點的橢圓=1上一點,則DPF1F2的周長等于_________。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

與橢圓有相同的焦點且過點P的雙曲線方程是           

查看答案和解析>>

同步練習冊答案