【題目】已知全集U=R,集合A={x|0<log2x<2},B={x|x≤3m﹣4或x≥8+m}(m<6).
(1)若m=2,求A∩(UB);
(2)若A∩(UB)=,求實數(shù)m的取值范圍.
【答案】
(1)解:全集U=R,集合A={x|0<log2x<2}={x|1<x<4},
B={x|x≤3m﹣4或x≥8+m}(m<6);
當(dāng)m=2時,B={x|x≤2或x≥10},
∴UB={x|2<x<10},
A∩(UB)={x|2<x<4};
(2)解:UB={x|3m﹣4<x<8+m},
當(dāng)UB=時,3m﹣4≥8+m,解得m≥6,不合題意,舍去;
當(dāng)UB≠時,應(yīng)滿足 ,
解得﹣4≤m≤ ,
∴實數(shù)m的取值范圍是﹣4≤m≤ .
【解析】(1)m=2時,求出集合B,根據(jù)補集與交集的定義計算即可;(2)求出UB,討論UB=和UB≠時,對應(yīng)實數(shù)m的取值范圍.
【考點精析】認(rèn)真審題,首先需要了解交、并、補集的混合運算(求集合的并、交、補是集合間的基本運算,運算結(jié)果仍然還是集合,區(qū)分交集與并集的關(guān)鍵是“且”與“或”,在處理有關(guān)交集與并集的問題時,常常從這兩個字眼出發(fā)去揭示、挖掘題設(shè)條件,結(jié)合Venn圖或數(shù)軸進而用集合語言表達,增強數(shù)形結(jié)合的思想方法).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:x∈R,x2+2x﹣m=0;命題q:x∈R,mx2+mx+1>0.
(1)若命題p為真命題,求實數(shù)m的取值范圍;
(2)若命題q為假命題,求實數(shù)m的取值范圍;
(3)若命題p∨q為真命題,且p∧q為假命題,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為正方形,PD⊥平面ABCD,PD=DC=2,點E為PC的中點,EF⊥PB,垂足為F點.
(1)求證:PA∥平面EDB;
(2)求證:PB⊥平面EFD;
(3)求異面直線BE與PA所成角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線 (a>0,b>0)的兩條漸近線與拋物線D:y2=2px(p>0)的準(zhǔn)線分別交于A,B兩點,O為坐標(biāo)原點,雙曲線的離心率為 ,△ABO的面積為2 .
(1)求雙曲線C的漸近線方程;
(2)求p的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)的定義域為[0,2],則函數(shù)f(x﹣3)的定義域為( )
A.[﹣3,﹣1]
B.[0,2]
C.[2,5]
D.[3,5]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC的三個頂點坐標(biāo)分別為A(﹣1,1),B(7,﹣1),C(﹣2,5),AB邊上的中線所在直線為l.
(1)求直線l的方程;
(2)若點A關(guān)于直線l的對稱點為D,求△BCD的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某幾何體的三視圖如右圖,其正視圖中的曲線部分為半個圓弧,則該幾何體的表面積為( )
A.19+πcm2
B.22+4πcm2
C.10+6 +4πcm2
D.13+6 +4πcm2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y= sin(ωx+ )(ω>0).
(1)若ω= ,求函數(shù)的單調(diào)增區(qū)間和對稱中心;
(2)函數(shù)的圖象上有如圖所示的A,B,C三點,且滿足AB⊥BC. ①求ω的值;
②求函數(shù)在x∈[0,2)上的最大值,并求此時x的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=AA1=2,E,F(xiàn)分別為A1B1 , B1C1的中點,則直線BE與直線CF所成角的余弦值是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com