f(x)=
2x  x≥1
0    x<1
下列結(jié)論正確的是(  )
A、
lim
x→1+
f(x)
=
lim
x→1-
f(x)
B、
lim
x→1+
f(x)
=2,
lim
x→1-
f(x)
不存在
C、
lim
x→1+
f(x)=0,
lim
x→1-
f(x)
不存在
D、
lim
x→1+
f(x)≠
lim
x→1-
f(x)
分析:由題設(shè)條件可知
lim
x→1+
f(x)=
lim
x→1+
2x=2
,
lim
x→1-
f(x)=
lim
x→1-
0=0
,分析可得答案.
解答:解:∵
lim
x→1+
f(x)=
lim
x→1+
2x=2
,
lim
x→1-
f(x)=
lim
x→1-
0=0
,
由此可知正確答案是D.
故選D.
點評:本題考查函數(shù)的左極限和右極限,解題時要注意分清左極限和右極限的求法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的定義域為R,且對于一切實數(shù)x滿足f(x+2)=f(2-x),f(x+7)=f(7-x)
(1)若f(5)=9,求:f(-5);
(2)已知x∈[2,7]時,f(x)=(x-2)2,求當(dāng)x∈[16,20]時,函數(shù)g(x)=2x-f(x)的表達(dá)式,并求出g(x)的最大值和最小值;
(3)若f(x)=0的一根是0,記f(x)=0在區(qū)間[-1000,1000]上的根數(shù)為N,求N的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•黃埔區(qū)一模)對于函數(shù)y=f(x)與常數(shù)a,b,若f(2x)=af(x)+b恒成立,則稱(a,b)為函數(shù)f(x)的一個“P數(shù)對”;若f(2x)≥af(x)+b恒成立,則稱(a,b)為函數(shù)f(x)的一個“類P數(shù)對”.設(shè)函數(shù)f(x)的定義域為R+,且f(1)=3.
(1)若(1,1)是f(x)的一個“P數(shù)對”,求f(2n)(n∈N*);
(2)若(-2,0)是f(x)的一個“P數(shù)對”,且當(dāng)x∈[1,2)時f(x)=k-|2x-3|,求f(x)在區(qū)間[1,2n)(n∈N*)上的最大值與最小值;
(3)若f(x)是增函數(shù),且(2,-2)是f(x)的一個“類P數(shù)對”,試比較下列各組中兩個式子的大小,并說明理由.
①f(2-n)與2-n+2(n∈N*);
②f(x)與2x+2(x∈(0,1]).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)y=f(x)的導(dǎo)函數(shù)是y=f′(x),稱εyx=f′(x)•
x
y
為函數(shù)f(x)的彈性函數(shù).
函數(shù)f(x)=2e3x彈性函數(shù)為
3x
3x
;若函數(shù)f1(x)與f2(x)的彈性函數(shù)分別為εf 1xεf 2x,則y=f1(x)+f2(x)(f1(x)+f2(x)≠0)的彈性函數(shù)為
 f1(x)ef1x+f2(x)ef2x  
f1(x)+f2(x)
 f1(x)ef1x+f2(x)ef2x  
f1(x)+f2(x)

(用εf 1x,εf 2x,f1(x)與f2(x)表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•順義區(qū)二模)對于定義域分別為M,N的函數(shù)y=f(x),y=g(x),規(guī)定:
函數(shù)h(x)=
f(x)•g(x),當(dāng)x∈M且x∈N
f(x),當(dāng)x∈M且x∉N
g(x),當(dāng)x∉M且x∈N

(1)若函數(shù)f(x)=
1
x+1
,g(x)=x2+2x+2,x∈R
,求函數(shù)h(x)的取值集合;
(2)若f(x)=1,g(x)=x2+2x+2,設(shè)bn為曲線y=h(x)在點(an,h(an))處切線的斜率;而{an}是等差數(shù)列,公差為1(n∈N*),點P1為直線l:2x-y+2=0與x軸的交點,點Pn的坐標(biāo)為(an,bn).求證:
1
|P1P2|2
+
1
|P1P3|2
+…+
1
|P1Pn|2
2
5
;
(3)若g(x)=f(x+α),其中α是常數(shù),且α∈[0,2π],請問,是否存在一個定義域為R的函數(shù)y=f(x)及一個α的值,使得h(x)=cosx,若存在請寫出一個f(x)的解析式及一個α的值,若不存在請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•成都二模)對于定義在區(qū)間D上的函數(shù)f(x),若滿足對?x1,x2∈D,且x1<x2時都有 f(x1)≥f(x2),則稱函數(shù)f(x)為區(qū)間D上的“非增函數(shù)”.若f(x)為區(qū)間[0,1]上的“非增函數(shù)”且f(0)=l,f(x)+f(l-x)=l,又當(dāng)x∈[0,
1
4
]時,f(x)≤-2x+1恒成立.有下列命題:
①?x∈[0,1],f(x)≥0;
②當(dāng)x1,x2∈[0,1]且x1≠x2,時,f(x1)≠f(x)
③f(
1
8
)+f(
5
11
)+f(
7
13
)+f(
7
8
)=2;
④當(dāng)x∈[0,
1
4
]時,f(f(x))≤f(x).
其中你認(rèn)為正確的所有命題的序號為
①③④
①③④

查看答案和解析>>

同步練習(xí)冊答案