設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,a2=-9,a5+a7=-2,則當(dāng)Sn取最小值時(shí),n=


  1. A.
    6
  2. B.
    7
  3. C.
    8
  4. D.
    9
A
分析:等差數(shù)列{an}中,由a2=-9,a5+a7=-2,解得a1=-11,d=2,=(n-6)2-36,由此能求出結(jié)果.
解答:等差數(shù)列{an}中,
∵a2=-9,a5+a7=-2,
,
解得a1=-11,d=2,
=n2-12n=(n-6)2-36,
∴當(dāng)n=6時(shí)Sn取最小值-36.
故選A.
點(diǎn)評(píng):本題考查等差數(shù)列的通項(xiàng)公式和前n項(xiàng)和公式的應(yīng)用,是基礎(chǔ)題.解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意配方法的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn.若S2k=72,且ak+1=18-ak,則正整數(shù)k=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•山東)設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,且S4=4S2,a2n=2an+1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}的前n項(xiàng)和為TnTn+
an+12n
(λ為常數(shù)).令cn=b2n(n∈N)求數(shù)列{cn}的前n項(xiàng)和Rn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的前n項(xiàng)之和為Sn滿足S10-S5=20,那么a8=
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,已知(a4-1)3+2012(a4-1)=1,(a2009-1)3+2012(a2009-1)=-1,則下列結(jié)論中正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若S9=81,S6=36,則S3=(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案