【題目】已知數(shù)列{an}是無(wú)窮數(shù)列,滿足lgan+1=|lgan﹣lgan﹣1|(n=2,3,4,…).
(1)若a1=2,a2=3,求a3 , a4 , a5的值;
(2)求證:“數(shù)列{an}中存在ak(k∈N*)使得lgak=0”是“數(shù)列{an}中有無(wú)數(shù)多項(xiàng)是1”的充要條件;
(3)求證:在數(shù)列{an}中ak(k∈N*),使得1≤ak<2.
【答案】
(1)解:∵a1=2,a2=3,lgan+1=|lgan﹣lgan﹣1|(n=2,3,4,…),
∴l(xiāng)ga3=|lg3﹣lg2|= ,即 ;
,即a4=2;
,即 ;
(2)證明:必要性、已知數(shù)列{an}中有無(wú)數(shù)多項(xiàng)是1,則數(shù)列{an}中存在ak(k∈N*)使得lgak=0.
∵數(shù)列{an}中有無(wú)數(shù)多項(xiàng)是1,∴數(shù)列{an}中存在ak(k∈N*)使得ak=1,
即數(shù)列{an}中存在ak(k∈N*)使得lgak=0.
充分性:已知數(shù)列{an}中存在ak(k∈N*)使得lgak=0,則數(shù)列{an}中有無(wú)數(shù)多項(xiàng)是1.
假設(shè)數(shù)列{an}中沒(méi)有無(wú)數(shù)多項(xiàng)是1,不妨設(shè) 是數(shù)列{an}中為1的最后一項(xiàng),則am+1≠1,
若am+1>1,則由lgan+1=|lgan﹣lgan﹣1|(n=2,3,4,…),可得lgam+2=lgam+1,
∴l(xiāng)gam+3=|lgam+2﹣lgam+1|=0,則lgam+3=1,與假設(shè)矛盾;
若0<am+1<0,則由lgan+1=|lgan﹣lgan﹣1|(n=2,3,4,…),可得lgam+2=﹣lgam+1,
∴l(xiāng)gam+3=|lgam+2﹣lgam+1|=﹣2lgam+1,
lgam+4=|lgam+3﹣lgam+2|=|﹣2lgam+1+lgam+1|=﹣lgam+1,
lgam+5=|lgam+4﹣lgam+3|=|﹣lgam+1+2lgam+1|=﹣lgam+1,
∴l(xiāng)gam+6=|lgam+5﹣lgam+4|=0,得lgam+6=1,與假設(shè)矛盾.
綜上,假設(shè)不成立,原命題正確;
(3)證明:假設(shè)數(shù)列{an}中不存在ak(k∈N*),使得1≤ak<2,
則0<ak<1或ak≥2(k=1,2,3,…).
由lgan+1=|lgan﹣lgan﹣1|(n=2,3,4,…),可得
(n=1,2,3,…)*,且an>0(n=1,2,3,…),
∴當(dāng)n≥2時(shí),an≥1,an≥2(n=3,4,5,…).
若a4=a3≥2,則a5=1,與a5≥2矛盾;
若a4≠a3≥2,
設(shè)bm=max{a2m+1,a2m+2}(m=1,2,3,…),則bm≥2.
由(*)可得, ,
,
∴ ,即 (m=1,2,3,…),
∴ ,
對(duì)于b1,顯然存在l使得 .
∴ ,這與bm≥2矛盾.
∴假設(shè)不成立,原命題正確
【解析】(1)由a1=2,a2=3,結(jié)合lgan+1=|lgan﹣lgan﹣1|(n=2,3,4,…)可得a3 , a4 , a5的值;(2)分必要性和充分性證明,充分性利用反證法證明;(3)利用反證法,假設(shè)數(shù)列{an}中不存在ak(k∈N*),使得1≤ak<2,則0<ak<1或ak≥2(k=1,2,3,…).然后分類推出矛盾得答案.
【考點(diǎn)精析】關(guān)于本題考查的數(shù)列的通項(xiàng)公式,需要了解如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn),,在拋物線上,的重心與此拋物線的焦點(diǎn)重合(如圖)
(I)寫(xiě)出該拋物線的方程和焦點(diǎn)的坐標(biāo);
(II)求線段中點(diǎn)的坐標(biāo);
(III)求弦所在直線的方程
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校從參加高三模擬考試的學(xué)生中隨機(jī)抽取60名學(xué)生,將其數(shù)學(xué)成績(jī)(均為整數(shù))分成六段[90,100),[100,110),…,[140,150)后得到如下部分頻率分布直方圖.觀察圖形的信息,回答下列問(wèn)題:
求分?jǐn)?shù)在[120,130)內(nèi)的頻率,并補(bǔ)全這個(gè)頻
率分布直方圖;
統(tǒng)計(jì)方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點(diǎn)
值作為代表,據(jù)此估計(jì)本次考試的平均分;
(3)用分層抽樣的方法在分?jǐn)?shù)段為[110,130)的學(xué)生中抽取一個(gè)容量為6的樣本,將該樣本看成一個(gè)總體,從中任取2個(gè),求至多有1人在分?jǐn)?shù)段[120,130)內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC是等邊三角形,點(diǎn)D在邊BC的延長(zhǎng)線上,且BC=2CD,AD= .
(1)求CD的長(zhǎng);
(2)求sin∠BAD的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ax2﹣x,若對(duì)任意x1 , x2∈[2,+∞),且x1≠x2 , 不等式 >0恒成立,則實(shí)數(shù)a的取值范圍是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}(n∈N*)是公差不為0的等差數(shù)列,a1=1,且 , , 成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{ }的前n項(xiàng)和為Tn , 求證:Tn<1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)a,b是正奇數(shù),數(shù)列{cn}(n∈N*)定義如下:c1=a,c2=b,對(duì)任意n≥3,cn是cn﹣1+cn﹣2的最大奇約數(shù).?dāng)?shù)列{cn}中的所有項(xiàng)構(gòu)成集合A.
(1)若a=9,b=15,寫(xiě)出集合A;
(2)對(duì)k≥1,令dk=max{c2k , c2k﹣1}(max{p,q}表示p,q中的較大值),求證:dk+1≤dk;
(3)證明集合A是有限集,并寫(xiě)出集合A中的最小數(shù).】
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓:,直線被圓所截得的弦的中點(diǎn)為P(5,3).(1)求直線的方程;(2)若直線:與圓相交于兩個(gè)不同的點(diǎn),求b的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com