設(shè)函數(shù)f(x)=loga(x-3a)(a>0且a≠1),當(dāng)點(diǎn)P(x,y)是函數(shù)y=f(x)圖像上的點(diǎn)時(shí),點(diǎn)Q(x-2a,-y)是函數(shù)y=g(x)圖像上的點(diǎn).
(1)寫(xiě)出函數(shù)y=g(x)的解析式;
(2)若當(dāng)x∈[a+2,a+3]時(shí),恒有|f(x)-g(x)|≤1,試確定a的取值范圍.
(1) g(x)=loga (2) a的取值范圍是0<a
(1)設(shè)點(diǎn)Q的坐標(biāo)為(x′,y′),
x′=x-2a,y′=-y. 即x=x′+2a,y=-y′.
∵點(diǎn)P(x,y)在函數(shù)y=loga(x-3a)的圖像上,
∴-y′=loga(x′+2a-3a),即y′=loga,∴g(x)=loga
(2)由題意得x-3a=(a+2)-3a=-2a+2>0;=>0,
a>0且a≠1,∴0<a<1,                                            
∵|f(x)-g(x)|=|loga(x-3a)-loga|
=|loga(x2-4ax+3a2)|·|f(x)-g(x)|≤1,
∴-1≤loga(x2-4ax+3a2)≤1,
∵0<a<1,∴a+2>2a f(x)=x2-4ax+3a2在[a+2,a+3]上為減函數(shù),
μ(x)=loga(x2-4ax+3a2)在[a+2,a+3]上為減函數(shù),
從而[μ(x)]max=μ(a+2)=loga(4-4a),[μ(x)]min=μ(a+3)=loga(9-6a),于是所求問(wèn)題轉(zhuǎn)化為求不等式組的解. 
由loga(9-6a)≥-1解得0<a,
由loga(4-4a)≤1解得0<a,
∴所求a的取值范圍是0<a.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在矩形中,已知,,在...上,分別截取,設(shè)四邊形的面積為.
(1)寫(xiě)出四邊形的面積之間的函數(shù)關(guān)系式;
(2)求當(dāng)為何值時(shí)取得最大值,最大值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

季節(jié)性服裝當(dāng)季節(jié)即將來(lái)臨時(shí),價(jià)格呈上升趨勢(shì),設(shè)某服裝開(kāi)始時(shí)定價(jià)為10元,并且每周(7天)漲價(jià)2元,5周后開(kāi)始保持20元的價(jià)格平穩(wěn)銷(xiāo)售;10周后當(dāng)季節(jié)即將過(guò)去時(shí),平均每周削價(jià)2元,直到16周末,該服裝已不再銷(xiāo)售.
小題1:試建立價(jià)格P與周次t之間的函數(shù)關(guān)系式.
小題2:若此服裝每件進(jìn)價(jià)Q與周次t之間的關(guān)系為Q=-0.125(t-8)2+12,t∈[0,16],t∈N*,試問(wèn)該服裝第幾周每件銷(xiāo)售利潤(rùn)L最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知關(guān)于x的實(shí)系數(shù)二次方程x2+ax+b=0有兩個(gè)實(shí)數(shù)根αβ,
證明:|α|<2且|β|<2是2|a|<4+b且|b|<4的充要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)在(-∞,0)∪(0,+∞)上有定義,且在(0,+∞)上是增函數(shù),f(1)=0,又g(θ)=sin2θmcosθ-2m,θ∈[0,],設(shè)M={m|g(θ)<0,m∈R},N={m|fg(θ)]<0},求MN.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

對(duì)函數(shù)y=f(x)定義域中任一個(gè)x的值均有f(x+a)=f(ax),
(1)求證y=f(x)的圖像關(guān)于直線x=a對(duì)稱(chēng);
(2)若函數(shù)f(x)對(duì)一切實(shí)數(shù)x都有f(x+2)=f(2-x),且方程f(x)=0恰好有四個(gè)不同實(shí)根,求這些實(shí)根之和。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題


為贏的2010年上海世博會(huì)的制高點(diǎn),某商家最近進(jìn)行了新科技產(chǎn)品的市場(chǎng)分析,調(diào)查顯示,新產(chǎn)品每件成本9萬(wàn)元,售價(jià)為30萬(wàn)元,每星期賣(mài)出432件,如果降低價(jià)格,銷(xiāo)售量可以增加,且每星期多賣(mài)出的商品件數(shù)與商品單價(jià)的降低值(單位:元,)的平方成正比,已知商品單價(jià)降低2萬(wàn)元時(shí),一星期多賣(mài)出24件.
(1)將一個(gè)星期的商品銷(xiāo)售利潤(rùn)表示成的函數(shù);
(2)如何定價(jià)才能使一個(gè)星期的商品銷(xiāo)售利潤(rùn)最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)已知函數(shù)給出下列結(jié)論:①f (x)是奇函數(shù);②f (x)在(-1,1)內(nèi)是增函數(shù);③。試判斷這些結(jié)論的正確性,并說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

對(duì),函數(shù)
的最小值是(   )
A.B.;C.;D.

查看答案和解析>>

同步練習(xí)冊(cè)答案