[例] 已知函數(shù)當(dāng)時(shí),求函數(shù)的最小值;
在區(qū)間上的最小值為。
當(dāng)時(shí),
,。在區(qū)間上為增函數(shù)。
在區(qū)間上的最小值為。
對(duì)于函數(shù)若,則優(yōu)先考慮用均值不等式求最小值,但要注意等號(hào)是否成立,否則會(huì)得到
而認(rèn)為其最小值為,但實(shí)際上,要取得等號(hào),必須使得,這時(shí)
所以,用均值不等式來(lái)求最值時(shí),必須注意:一正、二定、三相等,缺一不可。其次,不等式恒成立問(wèn)題常轉(zhuǎn)化為求函數(shù)的最值。本題考查求函數(shù)的最小值的三種通法:利用均值不等式,利用函數(shù)單調(diào)性,二次函數(shù)的配方法,考查不等式恒成立問(wèn)題以及轉(zhuǎn)化化歸思想;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2015屆福建省高一上學(xué)期期中數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)滿足:對(duì)于任意實(shí)數(shù),都有恒成立,且當(dāng)時(shí),恒成立;
(1)求的值,并例舉滿足題設(shè)條件的一個(gè)特殊的具體函數(shù);
(2)判定函數(shù)在R上的單調(diào)性,并加以證明;
(3)若函數(shù)(其中)有三個(gè)零點(diǎn),求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com