如果質(zhì)點(diǎn)A按規(guī)律s=2t3運(yùn)動(dòng),則在t=3 s時(shí)的瞬時(shí)加速度為(  )
A.18B.24C.36D.54
C
本題考查函數(shù)的導(dǎo)數(shù)在求瞬時(shí)速度及加速度中的應(yīng)用
,此為質(zhì)點(diǎn)在時(shí)刻的瞬時(shí)速度,即;再求導(dǎo)有,此即為質(zhì)點(diǎn)在時(shí)刻的瞬時(shí)加速度,即.所以當(dāng)時(shí)質(zhì)點(diǎn)的瞬時(shí)加速度為
正確答案為C
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

本小題滿分14分)
設(shè)函數(shù).
(Ⅰ)研究函數(shù)的單調(diào)性;
(Ⅱ)判斷的實(shí)數(shù)解的個(gè)數(shù),并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)y=x3-3x2-9x+14的單調(diào)區(qū)間為                                             (  )
A.在(-∞,-1)和(-1,3)內(nèi)單調(diào)遞增,在(3,+∞)內(nèi)單調(diào)遞減
B.在(-∞,-1)內(nèi)單調(diào)遞增,在(-1,3)和(3,+∞)內(nèi)單調(diào)遞減
C.在(-∞,-1)和(3,+∞)內(nèi)單調(diào)遞增,在(-1,3)內(nèi)單調(diào)遞減
D.以上都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

半徑為r的圓的面積S(r)=πr2,周長(zhǎng)C(r)=2πr,若將r看作(0,+∞)上的變量,則(πr2)′=2πr①,①式可以用語(yǔ)言敘述為:圓的面積函數(shù)的導(dǎo)數(shù)等于圓的周長(zhǎng)函數(shù).對(duì)于半徑為R的球,若將R看作(0,+∞)上的變量,請(qǐng)你寫出類似于①的式子:_______________________②,②式可以用語(yǔ)言敘述為:________________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),(其中).
(1)討論函數(shù)的單調(diào)性;
(2)若,求函數(shù),的最值;
(3)設(shè)函數(shù),當(dāng)時(shí),若對(duì)于任意的,總存在唯一
,使得成立.試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題満分15分)
已知上是增函數(shù),在[0,2]上是減函數(shù),且方程有三個(gè)根,它們分別為
(1)求c的值;
(2)求證
(3)求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知上最小正周期為2的周期函數(shù),且當(dāng)時(shí),,則函數(shù)的圖象在區(qū)間[0,6]上與軸的交點(diǎn)的個(gè)數(shù)為(   )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

.若函數(shù)的圖像與軸圍成的封閉圖形的面積為,則的展開式中的常數(shù)項(xiàng)為( )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知某類學(xué)習(xí)任務(wù)的掌握程度與學(xué)習(xí)時(shí)間(單位時(shí)間)之間有如下函數(shù)關(guān)系:
(這里我們稱這一函數(shù)關(guān)系為“學(xué)習(xí)曲線”).
若定義在區(qū)間上的平均學(xué)習(xí)效率為,這項(xiàng)學(xué)習(xí)任務(wù)從在從第個(gè)
單位時(shí)間起的2個(gè)單位時(shí)間內(nèi)的平均學(xué)習(xí)效率最高.則=      

查看答案和解析>>

同步練習(xí)冊(cè)答案