解:(1)f'(x)=
令f'(x)=0得,x
2+x-2=0
解得x
1=-2(舍去),x
2=1
當(dāng)0≤x<1時,f'(x)>0,f(x)單調(diào)遞增;
當(dāng)1<x≤2時,f'(x)<0,f(x)單調(diào)遞減.
(2)由上知:f(1)=ln2-
為函數(shù)f(x)的極大值.又因為f(0)=0,f(2)=ln3-1>0
∴f(1)>f(2)
所以f(0)=0為函數(shù)在[0,2]上的最小值,c≤0
分析:(1)先求導(dǎo),然后根據(jù)二次函數(shù)法研究導(dǎo)數(shù)大于或小于等于零,從而得到單調(diào)性.
(2)根據(jù)(1)推導(dǎo)出f(1)為函數(shù)f(x)的極大值,f(0)=0,從而判斷f(0)=0為函數(shù)的最小值,即可得出結(jié)果.
點評:本題主要考查用導(dǎo)數(shù)法研究函數(shù)的單調(diào)性,基本思路是:當(dāng)函數(shù)為增函數(shù)時,導(dǎo)數(shù)大于等于零;當(dāng)函數(shù)為減函數(shù)時,導(dǎo)數(shù)小于等于零;對于不等式恒成立問題,只要求出函數(shù)的最值的就可以得出結(jié)果.屬于中檔題.