【題目】橢圓C: =1的右焦點(diǎn)F,過(guò)焦點(diǎn)F的直線(xiàn)l0⊥x軸,P(x0 , y0)(x0y0≠0)為C上任意一點(diǎn),C在點(diǎn)P處的切線(xiàn)為l,l與l0相交于點(diǎn)M,與直線(xiàn)l1:x=3相交于N.
(I) 求證;直線(xiàn) =1是橢圓C在點(diǎn)P處的切線(xiàn);
(Ⅱ)求證: 為定值,并求此定值;
(Ⅲ)請(qǐng)問(wèn)△ONP(O為坐標(biāo)原點(diǎn))的面積是否存在最小值?若存在,請(qǐng)求出最小及此時(shí)點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

【答案】證明:(Ⅰ)∵P(x0 , y0)在橢圓C: 上,
,即 ,
∴直線(xiàn) 過(guò)點(diǎn)P(x0 , y0),
,消去y,并利用 ,得
即6x2﹣12x0x+6x02=0,即6(x﹣x02=0,∴x=x0 ,
∴直線(xiàn) =1與橢圓C在點(diǎn)P處有且僅有一個(gè)交點(diǎn),
綜上,直線(xiàn) 是橢圓C在點(diǎn)P處的切線(xiàn).
(Ⅱ)在 中,令x=1,得y= ,∴M(1, ),
中,令x=3,得y= ,∴N(3, ),
又F(1,0),∴|FM|=| |=2| |,
|FN|= =2 =2 =2 ,
= 為定值.
解:(Ⅲ)在直線(xiàn) 中,令y=0,得x= ,
∴切線(xiàn)l與x軸的交點(diǎn)為G( ,0),
SONP= = =
= | || |
= | || |
=
=| |= ,
SONP= = = = ,
令3﹣x0= ,由﹣ ,得 ,且t ,
= = = =
∴當(dāng)t= ,x0=1時(shí),△ONP(O為坐標(biāo)原點(diǎn))的面積是存在最小值{SONP}min= ,
此時(shí)P(1, ).

【解析】(Ⅰ)推導(dǎo)出直線(xiàn) 過(guò)點(diǎn)P(x0 , y0),由 ,得 ,由此能證明直線(xiàn) 是橢圓C在點(diǎn)P處的切線(xiàn).(Ⅱ)在 中,令x=1,M(1, ),令x=3,得N(3, ),由此求出|FM|,|FN|,由此能證明 為定值.(Ⅲ)求出切線(xiàn)l與x軸的交點(diǎn)為G( ,0),推導(dǎo)出SONP= = ,令3﹣x0= ,利用配方法能求出△ONP的面積的最小值及對(duì)應(yīng)的P點(diǎn)坐標(biāo).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知等邊△ABC中,E,F(xiàn)分別為AB,AC邊的中點(diǎn),N為BC邊上一點(diǎn),且CN= BC,將△AEF沿EF折到△A′EF的位置,使平面A′EF⊥平面EF﹣CB,M為EF中點(diǎn).

(1)求證:平面A′MN⊥平面A′BF;
(2)求二面角E﹣A′F﹣B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知命題方程有兩個(gè)不等的實(shí)根;命題方程無(wú)實(shí)根,若“”為真,“”為假,則實(shí)數(shù)的取值范圍為___________.(寫(xiě)成區(qū)間的形式)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】動(dòng)點(diǎn)在拋物線(xiàn)上,過(guò)點(diǎn)垂直于軸,垂足為,設(shè).

(Ⅰ)求點(diǎn)的軌跡的方程;

(Ⅱ)若點(diǎn)上的動(dòng)點(diǎn),過(guò)點(diǎn)作拋物線(xiàn)的兩條切線(xiàn),切點(diǎn)分別為,設(shè)點(diǎn)到直線(xiàn)的距離為,求的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的中心在原點(diǎn),離心率等于,它的一個(gè)短軸端點(diǎn)恰好是拋物線(xiàn)的焦點(diǎn).

(1)求橢圓的方程;

(2)已知、是橢圓上的兩點(diǎn),是橢圓上位于直線(xiàn)兩側(cè)的動(dòng)點(diǎn).

①若直線(xiàn)的斜率為,求四邊形面積的最大值;

②當(dāng)運(yùn)動(dòng)時(shí),滿(mǎn)足,試問(wèn)直線(xiàn)的斜率是否為定值,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲乙兩臺(tái)機(jī)床同時(shí)生產(chǎn)一種零件,10天中,兩臺(tái)機(jī)床每天出的次品數(shù)分別如下圖所示。

0

1

0

2

2

0

3

1

2

4

2

3

1

1

0

2

1

1

0

1

從數(shù)據(jù)上看, ________________機(jī)床的性能較好(填“甲”或者“乙”).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,設(shè)拋物線(xiàn)的準(zhǔn)線(xiàn)軸交于橢圓的右焦點(diǎn)的左焦點(diǎn).橢圓的離心率為,拋物線(xiàn)與橢圓交于軸上方一點(diǎn),連接并延長(zhǎng)其交于點(diǎn), 上一動(dòng)點(diǎn),且在之間移動(dòng).

(1)當(dāng)取最小值時(shí),求的方程;

(2)若的邊長(zhǎng)恰好是三個(gè)連續(xù)的自然數(shù),當(dāng)面積取最大值時(shí),求面積最大值以及此時(shí)直線(xiàn)的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 C: 的焦距為2,且過(guò)點(diǎn),右焦點(diǎn)為.設(shè)A,B 是C上的兩個(gè)動(dòng)點(diǎn),線(xiàn)段 AB 的中點(diǎn)M 的橫坐標(biāo)為,線(xiàn)段AB的中垂線(xiàn)交橢圓C于P,Q 兩點(diǎn).

(1)求橢圓 C 的方程;

(2)設(shè)M點(diǎn)縱坐標(biāo)為m,求直線(xiàn)PQ的方程,并求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿(mǎn)分12分)

將邊長(zhǎng)為2的正方形ABCD沿對(duì)角線(xiàn)BD折疊,使得平面ABD⊥平面CBD,AE⊥平面ABD,且AE

)求證:DE⊥AC;

)求DE與平面BEC所成角的正弦值;

)直線(xiàn)BE上是否存在一點(diǎn)M,使得CM∥平面ADE,若存在,求點(diǎn)M的位置,不存在請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案