如圖,是半圓的直徑,是半圓上除、外的一個動點,垂直于半圓所在的平面, ∥,,,.
⑴證明:平面平面;
⑵當(dāng)三棱錐體積最大時,求二面角的余弦值.
(1)要證明平面平面,需要通過其判定定理來得到,先證明平面,進而得到。
(2)
解析試題分析:(Ⅰ)證明:因為是直徑,所以 1分,
因為平面,所以 2分,
因為,所以平面 3分
因為, ,所以是平行四邊形,,所以平面 4分,
因為平面,所以平面平面 5分
(Ⅱ)依題意, 6分,
由(Ⅰ)知
,當(dāng)且僅當(dāng)時等號成立 8分
如圖所示,建立空間直角坐標(biāo)系,則,,,則,,, 9分
設(shè)面的法向量為,,即, 10分
設(shè)面的法向量為, ,即, 12分
可以判斷與二面角的平面角互補
二面角的余弦值為。 13分
考點:面面垂直和二面角的平面角的求解
點評:主要是考查了面面垂直和二面角的平面角的求解,屬于基礎(chǔ)題。
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四棱柱中,平面,底面是邊長為1的正方形,側(cè)棱,
(Ⅰ)證明:;
(Ⅱ)若棱上存在一點,使得,
當(dāng)二面角的大小為時,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四棱錐P-ABCD中,底面ABCD為平行四邊形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.
(Ⅰ) 證明:PA⊥BD;
(Ⅱ) 若PD=AD,求二面角A-PB-C的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知斜三棱柱—,側(cè)面與底面垂直,∠,,且⊥,=.
(1)試判斷與平面是否垂直,并說明理由;
(2)求側(cè)面與底面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示的幾何體是由以等邊三角形ABC為底面的棱柱被平面DEF所截面得,已知FA⊥平面ABC,AB=2,BD=1,AF=2, CE=3,O為AB的中點.
(1)求證:OC⊥DF;
(2)求平面DEF與平面ABC相交所成銳二面角的大。
(3)求多面體ABC—FDE的體積V.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在三棱柱ABC-A1B1C1中, CC1⊥底面ABC,AC=BC,M,N分別是CC1,AB的中點.
(1)求證:CN⊥AB1;
(2)求證:CN//平面AB1M.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,△ABC中,AC=BC=AB,ABED是邊長為1的正方形,EB⊥底面ABC,若G,F分別是EC,BD的中點.
(1)求證:GF∥底面ABC;
(2)求證:AC⊥平面EBC;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com