(本小題滿分14分)
在四棱錐中,底面是矩形,平面,,. 以的中點為球心、為直徑的球面交于點,交于點.
(1)求證:平面⊥平面;
(2)求直線與平面所成的角的大。
(3)求點到平面的距離.
(I)見解析(Ⅱ)(Ⅲ)
方法一:(1)依題設(shè)知,AC是所作球面的直徑,則AM⊥MC。
又因為P A⊥平面ABCD,則PA⊥CD,又CD⊥AD,
所以CD⊥平面PAD,則CD⊥AM,所以A M⊥平面PCD,
所以平面ABM⊥平面PCD。
(2)由(1)知,,又,則是的中點可得
,
則
⑶設(shè)D到平面ACM的距離為,由即,
可求得,
設(shè)所求角為,則,。
可求得PC=6。因為AN⊥NC,由,得PN。所以。
故N點到平面ACM的距離等于P點到平面ACM距離的。
又因為M是PD的中點,則P、D到平面ACM的距離相等,由(2)可知所求距離為。
方法二:
(1)同方法一;
(2)如圖所示,建立空間直角坐標(biāo)系,則,,, ,,;設(shè)平面的一個法向量,由可得:,令,則
。設(shè)所求角為,則,
所以所求角的大小為。
(3)由條件可得,.在中,,所以,則, ,所以所求距離等于點到平面距離的,設(shè)點到平面距離為則,所以所求距離為。
科目:高中數(shù)學(xué) 來源: 題型:
3 |
π |
4 |
π |
4 |
π |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分14分)設(shè)橢圓C1的方程為(a>b>0),曲線C2的方程為y=,且曲線C1與C2在第一象限內(nèi)只有一個公共點P。(1)試用a表示點P的坐標(biāo);(2)設(shè)A、B是橢圓C1的兩個焦點,當(dāng)a變化時,求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設(shè)g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達式。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年江西省撫州市教研室高二上學(xué)期期末數(shù)學(xué)理卷(A) 題型:解答題
(本小題滿分14分)
已知=2,點()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項公式;
(3)記,求數(shù)列{}的前n項和,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆山東省威海市高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)
某網(wǎng)店對一應(yīng)季商品過去20天的銷售價格及銷售量進行了監(jiān)測統(tǒng)計發(fā)現(xiàn),第天()的銷售價格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.
(Ⅰ)寫出銷售額關(guān)于第天的函數(shù)關(guān)系式;
(Ⅱ)求該商品第7天的利潤;
(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省高三下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)已知的圖像在點處的切線與直線平行.
⑴ 求,滿足的關(guān)系式;
⑵ 若上恒成立,求的取值范圍;
⑶ 證明:()
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com