4.已知集合M={x|x2-2x-3=0},N={x|-2<x≤4},M∩N=( 。
A.{x|-1<x≤3}B.{x|-1<x≤4}C.{-3,1}D.{-1,3}

分析 化簡集合M,根據(jù)交集的定義寫出M∩N即可.

解答 解:M={x|x2-2x-3=0}={-1,3},
N={x|-2<x≤4},
所以M∩N={-1,3}.
故選:D.

點評 本題考查了集合的化簡與運算問題,是基礎題目.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

17.若函數(shù)f(x)滿足f(-x)=f(x),且x>0時,f(x)=3x,則x<0時,f(x)等于(  )
A.3-xB.3xC.-3-xD.-3x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.如果函數(shù)f(x)=x2+2(a-1)x+2的單調減區(qū)間是(-∞,4],則a=( 。
A.3B.-3C.5D.-5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知f(x)是R上的奇函數(shù),f(1)=1,且對任意x∈R都有f(x+4)=f(x)+f(2)成立,則f(2016)+f(2017)=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示,把f(x)的圖象向右平移$\frac{π}{3}$個單位長度得到g(x)的圖象,則g(x)的單調遞增區(qū)間為( 。
A.[-$\frac{5π}{12}$+kπ,$\frac{π}{12}$+kπ](k∈Z)B.[-$\frac{π}{6}$+kπ,$\frac{π}{3}$+kπ](k∈Z)
C.[-$\frac{π}{12}$+kπ,$\frac{5π}{12}$+kπ](k∈Z)D.[-$\frac{π}{6}$+kπ,$\frac{5π}{6}$+kπ](k∈Z)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知數(shù)列{an}的前n項和Sn滿足Sn=2an-1,等差數(shù)列{bn}滿足b1=1,b4=S8
(1)求數(shù)列{an},{bn}的通項公式;
(2)設${c_n}=\frac{1}{{{b_n}{b_{n+1}}}}$,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知函數(shù)$f(x)=\frac{x}{1+x}$.
(1)求f(2)與$f(\frac{1}{2})$,f(3)與$f(\frac{1}{3})$的值.
(2)求f(1)+f(2)+f(3)+…+f(2 012)+$f({\frac{1}{2}})+f({\frac{1}{3}})+…+f({\frac{1}{2012}})$.
(3)由(1)中求得的結果,你能發(fā)現(xiàn)f(x)與$f(\frac{1}{x})$有什么關系?并證明你的發(fā)現(xiàn).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知函數(shù)f(x)=|2x-1|.
(1)求不等式f(x)<2;
(2)若函數(shù)g(x)=f(x)+f(x-1)的最小值為a,且m+n=a(m>0,n>0),求$\frac{2}{m}+\frac{1}{n}$的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.偶函數(shù)定義在R上,當x>0時,f(x)<xf′(x),且 f(1)=0,則不等式xf(x)>0的解集為(-1,0)∪(1,+∞).

查看答案和解析>>

同步練習冊答案