已知(1+ax)6的展開(kāi)式中,含x3項(xiàng)的系數(shù)等于160,則實(shí)數(shù)a=______.
∵(1+ax)6的展開(kāi)式為 Tr+1=
Cr6
•(ax)r,令r=3,可得含x3項(xiàng)的系數(shù)等于a3
C36
=160,
解得 a=2,
故答案為:2.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知A,B,C,D四個(gè)城市,它們各自有一個(gè)著名的旅游點(diǎn),依次記為A,b,C,D,把A,B,C,D和A,b,C,D分別寫成左、右兩列.現(xiàn)在一名旅游愛(ài)好者隨機(jī)用4條線把城市與旅游點(diǎn)全部連接起來(lái), 構(gòu)成“一一對(duì)應(yīng)”.規(guī)定某城市與自身的旅游點(diǎn)相連稱為“連對(duì)”,否則稱為“連錯(cuò)”,連對(duì)一條得2分,連錯(cuò)一條得0分.
(Ⅰ)求該旅游愛(ài)好者得2分的概率.
(Ⅱ)求所得分?jǐn)?shù)的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在(x2-
1
2x
)n的展開(kāi)式中,求:
所有的二項(xiàng)式系數(shù)之和與各項(xiàng)系數(shù)之和的比為218,求該二項(xiàng)式展開(kāi)式中的
(1)第6項(xiàng);(2)第3項(xiàng)的系數(shù);(3)常數(shù)項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知(
x
+
1
2•
4x
n的展開(kāi)式前三項(xiàng)中的x的系數(shù)成等差數(shù)列.
(1)展開(kāi)式中所有的x的有理項(xiàng)為第幾項(xiàng)?
(2)求展開(kāi)式中系數(shù)最大的項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知(
x
-
1
2x
n的展開(kāi)式中,前三項(xiàng)系數(shù)的絕對(duì)值依次成等差數(shù)列,
(1)求n
(2)設(shè)(2x-1)n=a0+a1x+a2x2+…+anxn,求:①a1+a2+a3+…+an ②a1+2a2+3a3+…+nan

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在(x+y)n的展開(kāi)式中,若第九項(xiàng)系數(shù)最大,則n的值可能等于( 。
A.14,15B.15,16C.16,17D.14,15,16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某電視臺(tái)的一個(gè)智力游戲節(jié)目中,有一道將中國(guó)四大名著《三國(guó)演義》、《水滸傳》、《西游記》、《紅樓夢(mèng)》與它們的作者連線的題目,每本名著只能與一名作者連線,每名作者也只能與一本名著連線,每連對(duì)一個(gè)得2分,連錯(cuò)得-1分,某觀眾只知道《三國(guó)演義》的作者是羅貫中,其他不知道隨意連線,將他的得分記作ξ.
(1)求該觀眾得分ξ為負(fù)數(shù)的概率;
(2)求ξ的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

黃山旅游公司為了體現(xiàn)尊師重教,在每年暑假期間對(duì)來(lái)黃山旅游的全國(guó)各地教師和學(xué)生,憑教師證和學(xué)生證實(shí)行購(gòu)買門票優(yōu)惠.某旅游公司組織有22名游客的旅游團(tuán)到黃山旅游,其中有14名教師和8名學(xué)生.但是只有10名教師帶了教師證,6名學(xué)生帶了學(xué)生證.
(1)在該旅游團(tuán)中隨機(jī)采訪3名游客,求恰有1人持有教師證且持有學(xué)生證者最多1人的概率;
(2)在該團(tuán)中隨機(jī)采訪3名學(xué)生,設(shè)其中持有學(xué)生證的人數(shù)為隨機(jī)變量ξ,求ξ的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)離散型隨機(jī)變量X的概率分布列如下表:
X
1
2
3
4
P

p


 
則p等于(  )
A.      B.       C.     D.

查看答案和解析>>

同步練習(xí)冊(cè)答案