若直線上的一個(gè)點(diǎn)在平面α內(nèi),另一個(gè)點(diǎn)在平面α外,則直線與平面α的位置關(guān)系是(   )
A.αB.αC.∥αD.以上都不正確
B
分析:一條直線與一個(gè)平面有三種位置關(guān)系:直線在平面內(nèi),直線與平面平行和直線與平面相交.后兩個(gè)關(guān)系統(tǒng)稱為直線在平面外,由本題的條件知,直線與平面是相交的位置關(guān)系,由此可以得出正確選項(xiàng).
解答:解:有題意可知,直線l經(jīng)過平面α內(nèi)一點(diǎn)A,和平面α外一點(diǎn)B,
直線l必定是α外的直線,
因?yàn)槿鬺?α,則會(huì)出現(xiàn)點(diǎn)B∈α,與題設(shè)矛盾
∴l(xiāng)?α.
故選B
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如下圖,面的中點(diǎn),內(nèi)的動(dòng)點(diǎn),且到直線的距離為的最大值為  
A.30°B.60°C.90°D.120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

.(本小題滿分12分)
如圖,已知中,平面,
分別為的中點(diǎn).
(1)求證:平面平面
(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分14分)
如圖, ABCD為矩形,CF⊥平面ABCD,DE⊥平面ABCD,AB=4a,BC= CF=2a,DE=a, P為AB的中點(diǎn).

(1)求證:平面PCF⊥平面PDE;
(2)求證:AE∥平面BCF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(滿分15分)本題有2小題,第1小題6分,第2小題9分.
如圖,在直角梯形中,,,.將(及其內(nèi)部)繞所在的直線旋轉(zhuǎn)一周,形成一個(gè)幾何體.
(1)求該幾何體的體積;
(2)設(shè)直角梯形繞底邊所在的直線旋轉(zhuǎn)角)至,問:是否存在,使得.若存在,求角的值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
如圖,平行四邊形中,,,且,正方形所在平面和平面垂直,分別是的中點(diǎn).
(1)求證:平面
(2)求證:;
(3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知四棱錐中,底面是直角梯形,,,,,平面. 

(1)求證:平面;
(2)求證:平面;
(3)若M是PC的中點(diǎn),求三棱錐M—ACD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在正四棱錐S-ABCD中,E是BC的中點(diǎn),P點(diǎn)在側(cè)面內(nèi)及其邊界上運(yùn)動(dòng),并且總是保持PEAC.則動(dòng)點(diǎn)P的軌跡與△SCD組成的相關(guān)圖形最有可能的是(   ).
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,三棱柱的所有棱長均等于1,且
,則該三棱柱的體積是 ▲ 

查看答案和解析>>

同步練習(xí)冊答案