以O(shè)為原點(diǎn),所在直線為x軸,建立如圖所示的直角坐標(biāo)系.設(shè),點(diǎn)F的坐標(biāo)為,點(diǎn)G的坐標(biāo)為

(1)求關(guān)于t的函數(shù)的表達(dá)式,判斷函數(shù)的單調(diào)性,并證明你的判斷.

(2)設(shè)的面積,若以O(shè)為中心,F(xiàn)為焦點(diǎn)的橢圓經(jīng)過點(diǎn)G,求當(dāng)取得最小值時(shí)橢圓的方程.

(3)在(2)的條件下,若點(diǎn)P的坐標(biāo)為是橢圓上的兩點(diǎn),且,求實(shí)數(shù)的取值范圍.

答案:
解析:

函數(shù)在區(qū)間上單調(diào)遞增;;

解:(1)由題意知:,則,

解得

設(shè),則

,

,函數(shù)在區(qū)間上單調(diào)遞增.

(2)由,得

∴點(diǎn)G的坐標(biāo)為

∵函數(shù)在區(qū)間上單調(diào)遞增,

∴當(dāng)時(shí),取得最小值,此時(shí)點(diǎn)F、G的坐標(biāo)分別為(3,0)、

由題意設(shè)橢圓方程為

由點(diǎn)G在橢圓上,得,解得

∴所求橢圓方程為

(3)解答一:設(shè)C、D的坐標(biāo)分別為,則

,得

∵點(diǎn)C、D在橢圓上,∴

消去m,得

,∴,解得

∴實(shí)數(shù)的取值范圍是

解答二:設(shè)點(diǎn)A、B的坐標(biāo)分別(0,3)、(0,-3),過點(diǎn)A、B分別作y軸的垂線,交直線PC于點(diǎn)M、N.

,則,∴

,同理可得,則

綜上,實(shí)數(shù)的取值范圍是


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

以O(shè)為原點(diǎn),所在直線為軸,建立如 所示的坐標(biāo)系。設(shè),點(diǎn)F的坐標(biāo)為,,點(diǎn)G的坐標(biāo)為。

(1)求關(guān)于的函數(shù)的表達(dá)式,判斷函數(shù)的單調(diào)性,并證明你的判斷;

(2)設(shè)ΔOFG的面積,若以O(shè)為中心,F(xiàn)為焦點(diǎn)的橢圓經(jīng)過點(diǎn)G,求當(dāng)取最小值時(shí)橢圓的方程;

(3)在(2)的條件下,若點(diǎn)P的坐標(biāo)為,C、D是橢圓上的兩點(diǎn),且,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

以O(shè)為原點(diǎn),數(shù)學(xué)公式所在直線為x軸,建立如圖所示的直角坐標(biāo)系.若數(shù)學(xué)公式,點(diǎn)A的坐標(biāo)為(t,0),t∈(0,+∞),點(diǎn)G的坐標(biāo)為(m,3).
(1)若以O(shè)為中心,A為頂點(diǎn)的雙曲線經(jīng)過點(diǎn)G,求當(dāng)數(shù)學(xué)公式取最小值時(shí)雙曲線C的方程;
(2)過點(diǎn)N(0,1)能否作出直線l,使l與雙曲線C交于S,T兩點(diǎn),且OS⊥OT?若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以O(shè)為原點(diǎn),所在的直線為x軸,建立如圖所示的直角坐標(biāo)系.設(shè)·=1,點(diǎn)F的坐標(biāo)為(t,0),t∈[3,+∞),點(diǎn)G的坐標(biāo)為(x0,y0).

(1)求x0關(guān)于t的函數(shù)x0=f(x)的表達(dá)式,判斷函數(shù)f(t)的單調(diào)性,并證明你的判斷;

(2)設(shè)△OFG的面積S=t,若以O(shè)為中心,F(xiàn)為焦點(diǎn)的橢圓經(jīng)過點(diǎn)G,求當(dāng)||取得最小值時(shí)橢圓的方程;

(3)在(2)的條件下,若點(diǎn)P的坐標(biāo)為(0,92),C、D是橢圓上的兩點(diǎn),且(λ≠1),求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年甘肅省白銀市會(huì)寧五中高二(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題

以O(shè)為原點(diǎn),所在直線為x軸,建立直角坐標(biāo)系.設(shè),點(diǎn)F的坐標(biāo)為(t,0),t∈[3,+∞).點(diǎn)G的坐標(biāo)為(x,y).
(1)求x關(guān)于t的函數(shù)x=f(t)的表達(dá)式,并判斷函數(shù)f(x)的單調(diào)性.
(2)設(shè)△OFG的面積,若O以為中心,F(xiàn),為焦點(diǎn)的橢圓經(jīng)過點(diǎn)G,求當(dāng)取最小值時(shí)橢圓的方程.
(3)在(2)的條件下,若點(diǎn)P的坐標(biāo)為,C,D是橢圓上的兩點(diǎn),,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案