如圖,已知曲線從C上的點(diǎn)作x軸的垂線,交軸的垂線,交C于點(diǎn)設(shè)

   

   (I)求Q1、Q2的坐標(biāo);

   (II)求數(shù)列的通項(xiàng)公項(xiàng);

  

(III)記數(shù)列的前n項(xiàng)和為

 

 

解析:(I)由題意知                              …………2分

   (II)

   

   

    又                                …………4分

                                                    …………6分

   (III)

           …………8分

   

 

                       …………10分

   

……12分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知曲線C:y=
1
x
,Cn:y=
1
x+2-n
(n∈N*)
.從C上的點(diǎn)Qn(xn,yn)作x軸的垂線,交Cn于點(diǎn)Pn,再從Pn作y軸的垂線,交C于點(diǎn)Qn+1(xn+1,yn+1).設(shè)x1=1,an=xn+1-xn,bn=yn-yn+1
(I)求a1,a2,a3的值;
(II)求數(shù)列{an}的通項(xiàng)公式;
(III)設(shè)△PiQiQi+1(i∈N*)和面積為Si,記f(n)=
n
i=1
Si
,求證f(n)<
1
6
.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•南京二模)如圖,已知曲線C:y=
1
x
,Cn:y=
1
x+2-n
(n∈N*)
.從C上的點(diǎn)Qn(xn,yn)作x軸的垂線,交Cn于點(diǎn)Pn,再從點(diǎn)Pn作y軸的垂線,交C于點(diǎn)Qn+1(xn+1,yn+1),設(shè)x1=1,an=xn+1-xn,bn=yn-yn+1
(Ⅰ)求Q1,Q2的坐標(biāo);
(Ⅱ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅲ)記數(shù)列{an•bn}的前n項(xiàng)和為Sn,求證:Sn
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知曲線C:y=
1
x
,Cny=
1
x+2-n
(n∈N*).從C上的點(diǎn)Qn(xn,yn)作x軸的垂線,交Cn于點(diǎn)Pn,再過點(diǎn)Pn作y軸的垂線,交C于點(diǎn)Qn+1(xn+1,yn+1)設(shè),x1=1,an=xn+1-xn,bn=yn -yn+1
(1)求點(diǎn)Q1、Q2的坐標(biāo);
(2)求數(shù)列{an} 的通項(xiàng)公式;
(3)記數(shù)列{an•yn+1} 的前n項(xiàng)和為Sn,求證sn
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省揭陽市普寧二中高二(上)11月月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如圖,已知曲線C:,.從C上的點(diǎn)Qn(xn,yn)作x軸的垂線,交Cn于點(diǎn)Pn,再從點(diǎn)Pn作y軸的垂線,交C于點(diǎn)Qn+1(xn+1,yn+1),設(shè)x1=1,an=xn+1-xn,bn=yn-yn+1
(Ⅰ)求Q1,Q2的坐標(biāo);
(Ⅱ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅲ)記數(shù)列{an•bn}的前n項(xiàng)和為Sn,求證:

查看答案和解析>>

同步練習(xí)冊(cè)答案