在直角坐標(biāo)平面內(nèi),y軸右側(cè)的一動(dòng)點(diǎn)P到點(diǎn)的距離比它到軸的距離大

(Ⅰ)求動(dòng)點(diǎn)的軌跡的方程;

(Ⅱ)設(shè)為曲線上的一個(gè)動(dòng)點(diǎn),點(diǎn)軸上,若為圓的外切三角形,求面積的最小值.

 

【答案】

(Ⅰ)(Ⅱ)8.

【解析】

試題分析:(Ⅰ)通過變換和分析可得點(diǎn)的軌跡是拋物線,利用定義可求其標(biāo)準(zhǔn)方程;(Ⅱ)欲求面積最小,先求面積表達(dá)式.

試題解析:(Ⅰ)由題知點(diǎn)的距離與它到直線的距離相等,

所以點(diǎn)的軌跡是拋物線,方程為      4分

(Ⅱ)設(shè),則    即

由直線是圓的切線知

同理∵所以是方程的兩根

        8分

由題知

當(dāng)時(shí),取“

面積的最小值為      12分

考點(diǎn):解析幾何求軌跡方程,坐標(biāo)運(yùn)算,基本不等式.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)平面內(nèi),由不等式組
y≤2x
y≥x2
所表示的平面區(qū)域的面積為
4
3
4
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•懷化二模)在直角坐標(biāo)平面內(nèi),y軸右側(cè)的一動(dòng)點(diǎn)P到點(diǎn)(
1
2
,0)的距離比它到y(tǒng)軸的距離大
1
2

(Ⅰ)求動(dòng)點(diǎn)P的軌跡C的方程;
(Ⅱ)設(shè)Q為曲線C上的一個(gè)動(dòng)點(diǎn),點(diǎn)B,C在y軸上,若△QBC為圓(x-1)2+y2=1的外切三角形,求△QBC面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:懷化二模 題型:解答題

在直角坐標(biāo)平面內(nèi),y軸右側(cè)的一動(dòng)點(diǎn)P到點(diǎn)(
1
2
,0)的距離比它到y(tǒng)軸的距離大
1
2

(Ⅰ)求動(dòng)點(diǎn)P的軌跡C的方程;
(Ⅱ)設(shè)Q為曲線C上的一個(gè)動(dòng)點(diǎn),點(diǎn)B,C在y軸上,若△QBC為圓(x-1)2+y2=1的外切三角形,求△QBC面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年湖南省懷化市高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

在直角坐標(biāo)平面內(nèi),y軸右側(cè)的一動(dòng)點(diǎn)P到點(diǎn)(,0)的距離比它到y(tǒng)軸的距離大
(Ⅰ)求動(dòng)點(diǎn)P的軌跡C的方程;
(Ⅱ)設(shè)Q為曲線C上的一個(gè)動(dòng)點(diǎn),點(diǎn)B,C在y軸上,若△QBC為圓(x-1)2+y2=1的外切三角形,求△QBC面積的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案