【題目】已知函數(shù)的兩條相鄰對稱軸間的距離為,把fx)的圖象向右平移個單位得到函數(shù)gx)的圖象,且gx)為偶函數(shù),則fx)的單調(diào)遞增區(qū)間為(

A.B.

C.D.

【答案】D

【解析】

根據(jù)函數(shù)fx)的兩條相鄰對稱軸間的距離為,得到周期,求得ω2,此時fx)=2sin2x),再由平移變換,得gx)=2sin[2x+φ]2sin2x),再根據(jù)gx)為偶函數(shù),由φkπ,得fx)=2sin2x),然后利用正弦函數(shù)的單調(diào)性求解.

∵函數(shù)fx)的兩條相鄰對稱軸間的距離為

,即周期T,則ω2,

此時fx)=2sin2x),

fx)的圖象向右平移個單位得到函數(shù)gx)的圖象,

gx)=2sin[2x+φ]2sin2x),

gx)為偶函數(shù),

φkπ,

φkπ,kZ

|φ|,

∴當(dāng)k=﹣1時,φπ,

fx)=2sin2x),

2kπ2x2kπ,kZ

2kπ2x≤2kπ,

kπxkπkZ,

即函數(shù)的單調(diào)遞增區(qū)間為[kπ,kπ],kZ,

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,.函數(shù)的導(dǎo)函數(shù)上存在零點.

求實數(shù)的取值范圍;

若存在實數(shù),當(dāng)時,函數(shù)時取得最大值,求正實數(shù)的最大值;

若直線與曲線都相切,且軸上的截距為,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在中,角的對邊分別為,且.

(1)求的值;

(2)若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某房地產(chǎn)開發(fā)商有一塊如圖(1)所示的四邊形空地ABCD,經(jīng)測量,邊界CBCD的長都為2km,所形成的角∠

I)如果邊界ADAB所形成的角,現(xiàn)欲將該地塊用固定高度的板材圍成一個封閉的施工場地,求至多購買多少千米長度的板材;

II)當(dāng)邊界ADCD垂直,ABBC垂直時,為后期開發(fā)方便,擬在這塊空地上先建兩條內(nèi)部道路AE,EF,如圖(2)所示,點E在邊界CD上,且道路EF與邊界BC互相垂直,垂足為F,為節(jié)約成本,欲將道路AE,EF分別建成水泥路、砂石路,每1km的建設(shè)費用分別為、a元(a為常數(shù));若設(shè),試用表示道路AEEF建設(shè)的總費用(單位:元),并求出總費用的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),f(x)=-mx2-m+ln(1-m),(m<1)

(Ⅰ)當(dāng)m=時,求f(x)的極值;

(Ⅱ)證明:函數(shù)f(x)有且只有一個零點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐PABCD中,底面ABCD是正方形,PAAB1,

1)證明:BD⊥平面PAC;

2)若EPC的中點,F是棱PD上一點,且BE∥平面ACF,求二面角FACD的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),(.

1)若曲線在點處的切線方程為,求實數(shù)am的值;

2)若對任意恒成立,求實數(shù)a的取值范圍;

3)關(guān)于x的方程能否有三個不同的實根?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線Γy22pxp0)的焦點為F,P是拋物線Γ上一點,且在第一象限,滿足2,2

1)求拋物線Γ的方程;

2)已知經(jīng)過點A3,﹣2)的直線交拋物線ΓM,N兩點,經(jīng)過定點B3,﹣6)和M的直線與拋物線Γ交于另一點L,問直線NL是否恒過定點,如果過定點,求出該定點,否則說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙三人在政治、歷史、地理、物理、化學(xué)、生物、技術(shù)7門學(xué)科中任選3門.若同學(xué)甲必選物理,則下列說法正確的是(

A.甲、乙、丙三人至少一人選化學(xué)與全選化學(xué)是對立事件

B.甲的不同的選法種數(shù)為15

C.已知乙同學(xué)選了物理,乙同學(xué)選技術(shù)的概率是

D.乙、丙兩名同學(xué)都選物理的概率是

查看答案和解析>>

同步練習(xí)冊答案