設(shè)不等式2x1>m(x21)對滿足|m|≤2的一切m的值都成立,求x的取值范圍.

 

答案:
解析:

將已知不等式視為關(guān)于m的不等式.

(1)若x2-1=0,即x=±1時,2x-1>0,x>,所以x=1,此時原不等式對一切|m|≤2都成立:

(2)當時,使>對一切|m|≤2都成立的充要條件是,即

解得;

(3)當時,要使對一切|m|≤2都成立的充要條件是,即解得

綜合(1)、(2)、(3)得

 反客為主,將x的不等式看成是關(guān)于m的不等式,有利于快捷解題.若想到構(gòu)造函數(shù)

  f(m)=(x2-1)m+(1-2x),|m|≤2,則此函數(shù)的圖象表示一條線段,從而只要

 


練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)g(x)的圖象經(jīng)過坐標原點,且滿足g(x+1)=g(x)+2x+1,設(shè)函數(shù)f(x)=mg(x)-ln(x+1),其中m為非零常數(shù)
(1)求函數(shù)g(x)的解析式;
(2)當-2<m<0時,判斷函數(shù)f(x)的單調(diào)性并且說明理由;
(3)證明:對任意的正整數(shù)n,不等式ln(
1
n
+1)>
1
n2
-
1
n3
恒成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=2x+
a
2x
-1
(a為實數(shù)).
(Ⅰ)當a=0時,求方程|f(x)|=
1
2
的根;
(Ⅱ)當a=-1時,
(。┤魧τ谌我鈚∈(1,4],不等式f(t2-2t)-f(2t2-k)>0恒成立,求k的范圍;
(ⅱ)設(shè)函數(shù)g(x)=2x+b,若對任意的x1∈[0,1],總存在著x2∈[0,1],使得f(x1)=g(x2),求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=
2x-a
2x+1
(a∈R)的圖象關(guān)于坐標原點對稱
(1)求a的值,并求出函數(shù)F(x)=f(x)+2x-
4
2x+1
-1的零點;
(2)若函數(shù)h(x)=f(x)+2x-
b
2x+1
在[0,1]內(nèi)存在零點,求實數(shù)b的取值范圍
(3)設(shè)g(x)=log4
k+x
1-x
,若不等式f-1(x)≤g(x)在x∈[
1
2
,
2
3
]
上恒成立,求滿足條件的最小整數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)f(x)=
a•2x-12x+1
是R上的奇函數(shù).
(1)求實數(shù)a的值;
(2)若g(x)與f(x)關(guān)于直線y=x對稱,求g(x)的解析式和定義域.
(3)求解關(guān)于x的不等式g(x)>log2(1+x).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=x2-2x+3,g(x)=x2-x,
(1)解不等式|f(x)-g(x)|≥2014;
(2)若|f(x)-a|<2恒成立的充分條件是1≤x≤2,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案