(本題15分)已知點(diǎn)是橢圓E:()上一點(diǎn),F1、F2分別是橢圓E的左、右焦點(diǎn),O是坐標(biāo)原點(diǎn),PF1⊥x軸.
(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)A、B是橢圓E上兩個(gè)動(dòng)點(diǎn),().求證:直線(xiàn)AB的斜率為定值;
(Ⅲ)在(Ⅱ)的條件下,當(dāng)△PAB面積取得最大值時(shí),求λ的值.
(1) (2)根據(jù)已知的向量的坐標(biāo)關(guān)系,結(jié)合點(diǎn)差法來(lái)得到直線(xiàn)的斜率。
(3)
解析試題分析:解:(Ⅰ)∵PF1⊥x軸,
∴F1(-1,0),c=1,F2(1,0),
|PF2|=,2a=|PF1|+|PF2|=4,a=2,b2=3,
橢圓E的方程為:;…………………4分
(Ⅱ)設(shè)A(x1,y1)、B(x2,y2),由 得
(x1+1,y1-)+(x2+1,y2-)=(1,- ),
所以x1+x2=-2,y1+y2=(2-)………①
又,,
兩式相減得3(x1+x2)(x1-x2)+ 4(y1+y2)(y1-y2)=0………..②
以①式代入可得AB的斜率k=為定值; ……………9分
(Ⅲ)設(shè)直線(xiàn)AB的方程為y=x+t,
與聯(lián)立消去y并整理得 x2+tx+t2-3=0, △=3(4-t2),
AB|=,
點(diǎn)P到直線(xiàn)AB的距離為d=,
△PAB的面積為S=|AB|×d=, ………10分
設(shè)f(t)=S2=(t4-4t3+16t-16) (-2<t<2),
f’(t)=-3(t3-3t2+4)=-3(t+1)(t-2)2,由f’(t)=0及-2<t<2得t=-1.
當(dāng)t∈(-2,-1)時(shí),f’(t)>0,當(dāng)t∈(-1,2)時(shí),f’(t)<0,f(t)=-1時(shí)取得最大值,
所以S的最大值為.此時(shí)x1+x2=-t=1=-2,=3. ………………15分
考點(diǎn):橢圓的方程,向量
點(diǎn)評(píng):解析幾何中的圓錐曲線(xiàn)的求解,一般運(yùn)用待定系數(shù)法來(lái)求解,同時(shí)運(yùn)用設(shè)而不求的思想來(lái)研究直線(xiàn)與橢圓的位置關(guān)系,屬于中檔題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓 經(jīng)過(guò)點(diǎn)其離心率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線(xiàn)與橢圓相交于A、B兩點(diǎn),以線(xiàn)段為鄰邊作平行四邊形OAPB,其中頂點(diǎn)P在橢圓上,為坐標(biāo)原點(diǎn).求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在平面直角坐標(biāo)系中,的兩個(gè)頂點(diǎn)、的坐標(biāo)分別是(-1,0),(1,0),點(diǎn)是的重心,軸上一點(diǎn)滿(mǎn)足,且.
(1)求的頂點(diǎn)的軌跡的方程;
(2)不過(guò)點(diǎn)的直線(xiàn)與軌跡交于不同的兩點(diǎn)、,當(dāng)時(shí),求與的關(guān)系,并證明直線(xiàn)過(guò)定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓C:=1(a>b>0)的離心率為,短軸一個(gè)端點(diǎn)到右焦點(diǎn)的距離為.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線(xiàn)l與橢圓C交于A、B兩點(diǎn),坐標(biāo)原點(diǎn)O到直線(xiàn)l的距離為,求△AOB面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分12分)
如圖,為橢圓上的一個(gè)動(dòng)點(diǎn),弦、分別過(guò)焦點(diǎn)、,當(dāng)垂直于軸時(shí),恰好有
(Ⅰ)求橢圓的離心率;
(Ⅱ)設(shè).
①當(dāng)點(diǎn)恰為橢圓短軸的一個(gè)端點(diǎn)時(shí),求的值;
②當(dāng)點(diǎn)為該橢圓上的一個(gè)動(dòng)點(diǎn)時(shí),試判斷是否為定值?
若是,請(qǐng)證明;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿(mǎn)分15分)
在平面內(nèi),已知橢圓的兩個(gè)焦點(diǎn)為,橢圓的離心率為 ,點(diǎn)是橢圓上任意一點(diǎn), 且,
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)以橢圓的上頂點(diǎn)為直角頂點(diǎn)作橢圓的內(nèi)接等腰直角三角形,這樣的等腰直角三角形是否存在?若存在請(qǐng)說(shuō)明有幾個(gè)、并求出直角邊所在直線(xiàn)方程?若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,,是拋物線(xiàn)(為正常數(shù))上的兩個(gè)動(dòng)點(diǎn),直線(xiàn)AB與x軸交于點(diǎn)P,與y軸交于點(diǎn)Q,且
(Ⅰ)求證:直線(xiàn)AB過(guò)拋物線(xiàn)C的焦點(diǎn);
(Ⅱ)是否存在直線(xiàn)AB,使得若存在,求出直線(xiàn)AB的方程;若不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分16分)
已知橢圓的離心率為,一條準(zhǔn)線(xiàn).
(1)求橢圓的方程;
(2)設(shè)O為坐標(biāo)原點(diǎn),是上的點(diǎn),為橢圓的右焦點(diǎn),過(guò)點(diǎn)F作OM的垂線(xiàn)與以OM為直徑的圓交于兩點(diǎn).
①若,求圓的方程;
②若是l上的動(dòng)點(diǎn),求證:點(diǎn)在定圓上,并求該定圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓:的一個(gè)頂點(diǎn)為,離心率為.直線(xiàn)與橢圓交于不同的兩點(diǎn)M,N.
(Ⅰ)求橢圓的方程;
(Ⅱ)當(dāng)△AMN得面積為時(shí),求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com