(本小題滿分12分)如圖,已知三棱柱的側(cè)棱與底面垂直,,,,分別是,的中點(diǎn),點(diǎn)在直線上,且;
(1)證明:無論取何值,總有;
(2)當(dāng)取何值時(shí),直線與平面所成的角最大?并求該角取最大值時(shí)的正切值;
(3)是否存在點(diǎn),使得平面與平面所成的二面角為30º,若存在,試確定點(diǎn)的位置,若不存在,請說明理由.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知正方形ABCD的邊長為1,F(xiàn)D⊥平面ABCD,EB⊥平面ABCD,F(xiàn)D=BE=1,M為BC邊上的動(dòng)點(diǎn).試探究點(diǎn)M的位置,使F—AE—M為直二面角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知四棱錐的底面是正方形,⊥底面,且,點(diǎn)、分別為側(cè)棱、的中點(diǎn)
(1)求證:∥平面;
(2)求證:⊥平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)如圖,已知三棱錐的側(cè)棱兩兩垂直,且,,是的中點(diǎn).
(Ⅰ)求異面直線與所成角的余弦值;
(Ⅱ)BE和平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)
如圖,四棱錐的側(cè)面垂直于底面,,,,在棱上,是的中點(diǎn),二面角為
(1)求的值;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分)
如圖,在底面是正方形的四棱錐中,面,交于點(diǎn),是中點(diǎn),為上一點(diǎn).
⑴求證:;
⑵確定點(diǎn)在線段上的位置,使//平面,并說明理由.
⑶當(dāng)二面角的大小為時(shí),求與底面所成角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在正方體中,為底面的中心,是的中點(diǎn),設(shè)是上的中點(diǎn),求證:(1);
(2)平面∥平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四邊形ABCD中,為正三角形,,,AC與BD交于O點(diǎn).將沿邊AC折起,使D點(diǎn)至P點(diǎn),已知PO與平面ABCD所成的角為,且P點(diǎn)在平面ABCD內(nèi)的射影落在內(nèi).
(Ⅰ)求證:平面PBD;
(Ⅱ)若已知二面角的余弦值為,求的大小.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com