已知正方體的棱長(zhǎng)為,點(diǎn)在線段上,點(diǎn)在線段上,點(diǎn)在線段上,且,,,的中點(diǎn),則四面體的體積(   )
A.與有關(guān),與無關(guān)B.與無關(guān),與無關(guān)
C.與無關(guān),與有關(guān)D.與有關(guān),與有關(guān)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)如圖,已知四棱柱ABCD—A1B1C1D1中,A1D⊥底面ABCD,底面ABCD是邊長(zhǎng)為1的正方形,側(cè)棱AA1=2。
(I)求證:C1D//平面ABB1A1
(II)求直線BD1與平面A1C1D所成角的正弦值;
(Ⅲ)求二面角D—A1C1—A的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在三棱錐中,已知△是正三角形,平面,的中點(diǎn),在棱上,且,
(1)求證:平面;
(2)求平面與平面所成的銳二面角的余弦值;
(3)若的中點(diǎn),問上是否存在一點(diǎn),使平面?若存在,說明點(diǎn)的位置;若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(9分)如圖,在四棱錐PABCD中,底面ABCD為矩形,側(cè)棱PA⊥底面ABCD,AB=,BC=1,PA=2,EPD的中點(diǎn).
(1)求直線BE與平面ABCD所成角的正切值;
(2)在側(cè)面PAB內(nèi)找一點(diǎn)N,使NE⊥面PAC,
并求出N點(diǎn)到ABAP的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)如圖,三棱錐ABPC中,APPC,ACBC,MAB中點(diǎn),DPB中點(diǎn),且△PMB為正三角形。
(Ⅰ)求證:DM//平面APC;
(Ⅱ)求證:BC⊥平面APC;
(Ⅲ)若BC=4,AB=20,求三棱錐DBCM的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分14分).如圖,在棱長(zhǎng)為4的正方體ABCD-A1B1C1D1中,E是D1C1上的一點(diǎn)且EC1=3D1 E,
(1) 求直線BE與平面ABCD所成角的正切值;
(2)求異面直線BE與CD所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
一個(gè)四棱錐的底面是邊長(zhǎng)為的正方形,且
(1)求證:平面;
(2)若為四棱錐中最長(zhǎng)的側(cè)棱,點(diǎn)的中點(diǎn).求直線SE.與平面SAC所成角的正弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知m、n為兩不重合直線,α、β是兩平面,給出下列命題:
① 若n//m,m⊥β,則n⊥β;   ② 若n⊥β,α⊥β,則n//α;
③ 若n//α,α⊥β,則n⊥β; 、堋
其中真命題的有(    )個(gè)。                             (   )
A.1     B.2  C.3 D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

關(guān)于直線、與平面,有下列四個(gè)命題: 
,則;   ②,則
,則;  ④,則.
其中正確命題的個(gè)數(shù)是(  )
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案