精英家教網 > 高中數學 > 題目詳情
已知邊長為a的等邊三角形內任意一點到三邊距離之和為定值,這個定值為,推廣到空間,棱長為a的正四面體內任意一點到各個面的距離之和也為定值,則這個定值為:(    )。
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知邊長為1的等邊△ABC,在線段AC上任取一點P(不與端點重合),將△ABP折起,使得平面BPC⊥平面ABP,則當三棱錐A-PBC的體積最大時,點A到面PBC的距離是
 
精英家教網

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖邊長為a的等邊三角形ABC的中線AF與中位線DE交于點G,已知△A′DE是△ADE繞DE旋轉過程中的一個圖形,則下列命題中正確的是
①③
①③

①動點A′在平面ABC上的射影在線段AF上;
②BC∥平面A′DE;
③三棱錐A′-FED的體積有最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網如圖,邊長為a的等邊三角形ABC的中線AF與中位線DE交于點G,已知△A′DE(A∉平面ABC)是△ADE繞DE旋轉過程中的一個圖形,有下列命題:
①平面A′FG⊥平面ABC;
②BC∥平面A′DE;
③三棱錐A′-DEF的體積最大值為
164
a3
④動點A′在平面ABC上的射影在線段AF上;
⑤直線DF與直線A′E可能共面.
其中正確的命題是
 
(寫出所有正確命題的編號)

查看答案和解析>>

科目:高中數學 來源:2011學年浙江省杭州二中高考數學第一次仿真試卷(文科)(解析版) 題型:解答題

已知邊長為1的等邊△ABC,在線段AC上任取一點P(不與端點重合),將△ABP折起,使得平面BPC⊥平面ABP,則當三棱錐A-PBC的體積最大時,點A到面PBC的距離是   

查看答案和解析>>

科目:高中數學 來源:專項題 題型:填空題

已知邊長為1的等邊△ABC,在線段AC上任取一點P(不與端點重合),將△ABP沿PB折起,使得平面BPC⊥平面ABP,則當三棱錐A-PBC的體積最大時,點A到面PBC的距離是(    )。

查看答案和解析>>

同步練習冊答案