【題目】已知線段上有個確定的點(包括端點).現(xiàn)對這些點進行往返標數(shù)(從…進行標數(shù),遇到同方向點不夠數(shù)時就“調(diào)頭”往回數(shù)).如圖:在點上標,稱為點,然后從點開始數(shù)到第二個數(shù),標上,稱為點,再從點開始數(shù)到第三個數(shù),標上,稱為點(標上數(shù)的點稱為點),……,這樣一直繼續(xù)下去,直到,,…,都被標記到點上,則點上的所有標記的數(shù)中,最小的是_______.

【答案】

【解析】

將線段上的點考慮為一圓周,所以共有16個位置,利用規(guī)則,可知標記2019的是,2039190除以16的余數(shù)為6,即線段的第6個點標為2019,則,令,即可得

依照題意知,標有2的是1+2,標有3的是1+2+3,……,標有2019的是1+2+3+……+2019,將將線段上的點考慮為一圓周,所以共有16個位置,利用規(guī)則,可知標記2019的是,2039190除以16的余數(shù)為6,即線段的第6個點標為2019,令,解得

,故點上的所有標記的數(shù)中,最小的是3.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,是一個算法流程圖,當輸入的x=5時,那么運行算法流程圖輸出的結果是(
A.10
B.20
C.25
D.35

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解今年某校高三畢業(yè)班準備報考飛行員學生的體重情況,將所得的數(shù)據(jù)整理后,畫出了頻率分布直方圖(如圖),已知圖中從左到右的前3個小組的頻率之比為1:2:3,其中第2小組的頻數(shù)為12.
(Ⅰ)求該校報考飛行員的總人數(shù);
(Ⅱ)以這所學校的樣本數(shù)據(jù)來估計全省的總體數(shù)據(jù),若從全省報考飛行員的同學中(人數(shù)很多)任選三人,設X表示體重超過60公斤的學生人數(shù),求X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知 f(x+1)=f(x﹣1),f(x)=f(﹣x+2),方程 f(x)=0 [0,1]內(nèi)有且只有一個 x=,則 f(x)=0 在區(qū)間[0,2016]內(nèi)根的個數(shù)為

A. 2015 B. 1007 C. 2016 D. 1008

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“ALS冰桶挑戰(zhàn)賽是一項社交網(wǎng)絡上發(fā)起的籌款活動,活動規(guī)定:被邀請者要么在24小時內(nèi)接受挑戰(zhàn),要么選擇為慈善機構捐款(不接受挑戰(zhàn)),并且不能重復參加該活動.若被邀請者接受挑戰(zhàn),則他需在網(wǎng)絡上發(fā)布自己被冰水澆遍全身的視頻內(nèi)容,然后便可以邀請另外3個人參與這項活動.假設每個人接受挑戰(zhàn)與不接受挑戰(zhàn)是等可能的,且互不影響.

1)若某參與者接受挑戰(zhàn)后,對其他3個人發(fā)出邀請,則這3個人中至少有2個人接受挑戰(zhàn)的概率是多少?

2)為了解冰桶挑戰(zhàn)賽與受邀請的性別是否有關,某調(diào)查機構進行了隨機抽樣調(diào)查,調(diào)查得到如下列聯(lián)表:


接受挑戰(zhàn)

不接受挑戰(zhàn)

合計

男性

45

15

60

女性

25

15

40

合計

70

30

100

根據(jù)表中數(shù)據(jù),能否在犯錯誤的概率不超過0.1的前提下認為冰桶挑戰(zhàn)賽與受邀請者的性別有關

附:


0.100

0.050

0.010

0.001


2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四面體ABOC中,OC⊥OA,OC⊥OB,∠AOB=120°,且OA=OB=OC=1
(Ⅰ)設為P為AC的中點,Q為AB上一點,使PQ⊥OA,并計算 的值;
(Ⅱ)求二面角O﹣AC﹣B的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將函數(shù)fx)=cos2x)的圖象向左平移個單位長度后,得到函數(shù)gx)的圖象,則下列結論中正確的是_____.(填所有正確結論的序號)

gx)的最小正周期為4π

gx)在區(qū)間[0,]上單調(diào)遞減;

gx)圖象的一條對稱軸為x;

gx)圖象的一個對稱中心為(,0).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】愛心超市計劃按月訂購一種酸奶,每天進貨量相同,進貨成本每瓶4元,售價每瓶6元,未售出的酸奶降價處理,以每瓶2元的價格當天全部處理完根據(jù)往年銷售經(jīng)驗,每天需求量與當天最高氣溫單位:有關如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間,需求量為300瓶;如果最高氣溫低于20,需求量為200為了確定六月份的訂購計劃,統(tǒng)計了前三年六月份每天的最高氣溫數(shù)據(jù),得到下面的頻數(shù)分布表:

最高氣溫

天數(shù)

2

16

36

25

7

4

(1)求六月份這種酸奶一天的需求量不超過300瓶的頻率;

(2)當六月份有一天這種酸奶的進貨量為450瓶時,求這一天銷售這種酸奶的平均利潤(單位:元)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著我國經(jīng)濟模式的改變,電商已成為當今城鄉(xiāng)種新型的購銷平臺.已知經(jīng)銷某種商品的電商在任何一個銷售季度內(nèi),每售出噸該商品可獲利潤萬元,未售出的商品,每噸虧損萬元根據(jù)往年的銷售資料,得到該商品一個銷售季度內(nèi)市場需求量的頻率分布直方圖如圖所示.已知電商為下一個銷售季度籌備了噸該商品,現(xiàn)以單位:噸,)表示下一個銷售季度的市場需求量,(單位:萬 元)表示該電商下“個銷售季度內(nèi)經(jīng)銷該商品獲得的利潤.

(1)視分布在各區(qū)間內(nèi)的頻率為相應的概率,求;

(2)將表示為的函數(shù),求出該函數(shù)表達式;

(3)在頻率分布直方圖的市場需求量分組中,若以市場需求量落入該區(qū)間的頻率作為市場需求量的概率,求該季度利潤不超過萬元的概率.

查看答案和解析>>

同步練習冊答案