【題目】已知拋物線E的焦點(diǎn)為F是拋物線E上一點(diǎn),且

1求拋物線E的標(biāo)準(zhǔn)方程;

2設(shè)點(diǎn)B是拋物線E上異于點(diǎn)A的任意一點(diǎn),直線AB與直線交于點(diǎn)P,過(guò)點(diǎn)Px軸的垂線交拋物線E于點(diǎn)M,設(shè)直線BM的方程為,kb均為實(shí)數(shù),請(qǐng)用k的代數(shù)式表示b,并說(shuō)明直線BM過(guò)定點(diǎn).

【答案】(1);(2)見解析

【解析】

1利用拋物線的定義與性質(zhì)求p的值,即可寫出拋物線方程;2設(shè)點(diǎn),,由直線BM的方程和拋物線方程聯(lián)立,消去y,利用根與系數(shù)的關(guān)系和A,PB三點(diǎn)共線,化簡(jiǎn)整理可得BM的方程,從而求出直線BM所過(guò)的定點(diǎn).

解:1根據(jù)題意知,,①

因?yàn)?/span>,所以,②

聯(lián)立①②解得;

所以拋物線E的標(biāo)準(zhǔn)方程為;

2設(shè),;

又直線BM的方程為,代入,得;

由根與系數(shù)的關(guān)系,得;③

軸及點(diǎn)P在直線上,得,

則由APB三點(diǎn)共線,得,

整理,得

將③代入上式并整理,得,

由點(diǎn)B的任意性,得,即

所以;

即直線BM恒過(guò)定點(diǎn)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱ABCA1B1C1,BC=BB1,BAC=BCA=ABC,點(diǎn)EA1BAB1的交點(diǎn),點(diǎn)D在線段AC,B1C∥平面A1BD.

(1)求證:BDA1C;

(2)求證:AB1⊥平面A1BC

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】假設(shè)關(guān)于某種設(shè)備的使用年限(年)與所支出的維修費(fèi)用 (萬(wàn)元)有如下統(tǒng)計(jì):

2

3

4

5

6

2.2

3.8

5.5

6.5

7.0

已知, . ,

(1)求, ;

(2)具有線性相關(guān)關(guān)系,求出線性回歸方程;

(3)估計(jì)使用年限為10年時(shí),維修費(fèi)用約是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的部分圖象如圖所示.

(1) 求函數(shù)的解析式;

(2) 如何由函數(shù)的通過(guò)適當(dāng)圖象的變換得到函數(shù)的圖象, 寫出變換過(guò)程;

(3) 若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)橢圓 的左、右焦點(diǎn)、,其焦距為,點(diǎn)在橢圓的內(nèi)部,點(diǎn)是橢圓上的動(dòng)點(diǎn),且恒成立,則橢圓離心率的取值范圍是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】牡丹江一中2019年將實(shí)行新課程改革,即除語(yǔ)、數(shù)、外三科為必考科目外,還要在理、化、生、史、地、政六科中選擇三科作為選考科目.已知某生的高考志愿為北京大學(xué)環(huán)境科學(xué)專業(yè),按照17年北大高考招生選考科目要求物、化必選,為該生安排課表(上午四節(jié)、下午四節(jié),上午第四節(jié)和下午第一節(jié)不算相鄰),現(xiàn)該生某天最后兩節(jié)為自習(xí)課,且數(shù)學(xué)不排下午第一節(jié),語(yǔ)文、外語(yǔ)不相鄰,則該生該天課表有(  )種.

A. 444B. 1776C. 1440D. 1560

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),其中.以原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求出曲線的普通方程和曲線的直角坐標(biāo)方程;

(2)已知曲線交于 兩點(diǎn),記點(diǎn), 相應(yīng)的參數(shù)分別為, ,當(dāng)時(shí),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)的圖像可以由y=cos2x的圖像先縱坐標(biāo)不變橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,再橫坐標(biāo)不變縱坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,最后向右平移個(gè)單位而得到.

⑴求f(x)的解析式與最小正周期

⑵求f(x)在x∈(0,π)上的值域與單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為 (為參數(shù)),以為極點(diǎn), 軸的非負(fù)半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為.

(1)求曲線的極坐標(biāo)方程;

(2)設(shè)直線與曲線相交于兩點(diǎn),求的值.

【答案】(1)曲線的極坐標(biāo)方程為: ;(2)6.

【解析】試題分析:(1)先根據(jù)三角函數(shù)平方關(guān)系消參數(shù)得曲線的普通方程,再根據(jù)化為極坐標(biāo)方程;(2)將直線l的極坐標(biāo)方程代入曲線的極坐標(biāo)方程得,再根據(jù)的值.

試題解析:解:1)將方程消去參數(shù),

∴曲線的普通方程為,

代入上式可得,

∴曲線的極坐標(biāo)方程為: -

2)設(shè)兩點(diǎn)的極坐標(biāo)方程分別為,

消去

根據(jù)題意可得是方程的兩根,

,

型】解答
結(jié)束】
23

【題目】選修4—5:不等式選講

已知函數(shù)

(1)當(dāng)時(shí),求關(guān)于x的不等式的解集;

(2)若關(guān)于x的不等式有解,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案