.(本小題滿分12分)
如圖,在四棱錐P-ABCD中,底面為正方形,PA丄平面ABCD,且PA=AD,E為棱PC上的一點(diǎn),PD丄平面
(I)求證:E為PC的中點(diǎn);
(II)若N為CD的中點(diǎn),M為AB上的動點(diǎn),當(dāng)直線MN與平面ABE所成的角最大時,求二面角的大小.
解:(Ⅰ)過作交于,由
可知
四點(diǎn)共面,…………………2分
又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052307190093754019/SYS201205230720272656341267_DA.files/image008.png">
∴,
∵
∴在中,,………………………4分
∴可得E為PC的中點(diǎn).……………………6分
(Ⅱ)連結(jié)
連結(jié),則為直線MN與平面ABE所成的角.
在中,
∴最小時,最大,此時.
所以M為AB中點(diǎn),……………………………9分
則.
由,
可知
設(shè),
.……………12分
法二(Ⅰ)建立如圖所示空間直角坐標(biāo)系,不妨設(shè),則,.………………2分
設(shè),
,…………………4分
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052307190093754019/SYS201205230720272656341267_DA.files/image036.png"> , ,
,
即,.……………………6分
(Ⅱ)設(shè),,
由(Ⅰ)知面的法向量為,
設(shè)MN與面ABE所成角為,
當(dāng)t=時,最大,此時M為AB中點(diǎn),…………………9分
平面NEM的法向量為 設(shè)平面CEM的法向量為
而
令
,
.……………………12分
【解析】略
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(2009湖南卷文)(本小題滿分12分)
為拉動經(jīng)濟(jì)增長,某市決定新建一批重點(diǎn)工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項(xiàng)目的個數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨(dú)立地從中任選一個項(xiàng)目參與建設(shè).求:
(I)他們選擇的項(xiàng)目所屬類別互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人選擇的項(xiàng)目屬于民生工程的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)
某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預(yù)測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2,
(注:利潤與投資單位是萬元)
(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com