已知橢圓數(shù)學公式+數(shù)學公式=1的左、右焦點分別為F1、F2,M是橢圓上一點,N是MF1的中點,若|ON|=1,則MF1的長等于


  1. A.
    2
  2. B.
    4
  3. C.
    6
  4. D.
    5
C
分析:先根據(jù)橢圓的方程求得a,進而根據(jù)橢圓的定義求得|MF1|+|MF2|的值,進而把|ON|的值代入即可求得答案.
解答:由橢圓方程知a=4,
∴根據(jù)橢圓的定義可知|MF1|+|MF2|=8,
∴|MF1|=8-|MF2|=8-2|ON|=8-2=6.
故選C.
點評:本題主要考查了橢圓的簡單性質.特別是利用了橢圓的定義,考查了學生對橢圓基礎知識的運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知橢圓+=1的左、右焦點分別為F1、F2,點P在橢圓上.若P、F1、F2是一個直角三角形的三個頂點,則點P到x軸的距離為(    )

A.             B.3           C.         D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓+=1的左、右焦點分別為F1、F2,點P在橢圓上.若P、F1、F2是一個直角三角形的三個頂點,則點P到x軸的距離為(    )

A.             B.3           C.         D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知橢圓+=1的左焦點為F,過點F的直線交橢圓于A,B兩點,線段AB的中點為G,AB的中垂線與x軸和y軸分別交于D,E兩點.

(1)若點G的橫坐標為-,求直線AB的斜率.

(2)記△GFD的面積為S1,△OED(O為原點)的面積為S2.試問:是否存在直線AB,使得S1=S2?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知橢圓+=1的左焦點為F,過點F的直線交橢圓于A,B兩點,線段AB的中點為G,AB的中垂線與x軸和y軸分別交于D,E兩點.

(1)若點G的橫坐標為-,求直線AB的斜率.

(2)記△GFD的面積為S1,△OED(O為原點)的面積為S2.試問:是否存在直線AB,使得S1=S2?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2013屆江西省高二第二次月考文科數(shù)學 題型:選擇題

已知橢圓+=1的左、右焦點分別為F1、F2,點P在橢圓上,若P、F1、F2是一個直角三角形的三個頂點,則點P到x軸的距離為( 。

A.              B.              C.          D.

 

查看答案和解析>>

同步練習冊答案