【題目】某公司在迎新年晚會(huì)上舉行抽獎(jiǎng)活動(dòng),有甲,乙兩個(gè)抽獎(jiǎng)方案供員工選擇. 方案甲:?jiǎn)T工最多有兩次抽獎(jiǎng)機(jī)會(huì),每次抽獎(jiǎng)的中獎(jiǎng)率均為 ,第一次抽獎(jiǎng),若未中獎(jiǎng),則抽獎(jiǎng)結(jié)束,若中獎(jiǎng),則通過(guò)拋一枚質(zhì)地均勻的硬幣,決定是否繼續(xù)進(jìn)行第二次抽獎(jiǎng),規(guī)定:若拋出硬幣,反面朝上,員工則獲得500元獎(jiǎng)金,不進(jìn)行第二次抽獎(jiǎng);若正面朝上,員工則須進(jìn)行第二次抽獎(jiǎng),且在第二次抽獎(jiǎng)中,若中獎(jiǎng),則獲得1000元;若未中獎(jiǎng),則所獲得獎(jiǎng)金為0元.
方案乙:?jiǎn)T工連續(xù)三次抽獎(jiǎng),每次中獎(jiǎng)率均為 ,每次中獎(jiǎng)均可獲得獎(jiǎng)金400元.
(Ⅰ)求某員工選擇方案甲進(jìn)行抽獎(jiǎng)所獲獎(jiǎng)金X(元)的分布列;
(Ⅱ)試比較某員工選擇方案乙與選擇方案甲進(jìn)行抽獎(jiǎng),哪個(gè)方案更劃算?
【答案】解:(Ⅰ) , , , 所以某員工選擇方案甲進(jìn)行抽獎(jiǎng)所獲獎(jiǎng)金X(元)的分布列為
X | 0 | 500 | 1000 |
P |
(Ⅱ)由(Ⅰ)可知,選擇方案甲進(jìn)行抽獎(jiǎng)所獲得獎(jiǎng)金X的均值 ,
若選擇方案乙進(jìn)行抽獎(jiǎng)中獎(jiǎng)次數(shù)ξ~B ,則 ,
抽獎(jiǎng)所獲獎(jiǎng)金X的均值E(X)=E(400ξ)=400E(ξ)=480,
故選擇方案甲較劃算
【解析】(I)利用相互獨(dú)立事件的概率計(jì)算公式即可得出.(II)利用數(shù)學(xué)期望計(jì)算公式、二項(xiàng)分布列的性質(zhì)即可得出.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】雙曲線的虛軸長(zhǎng)為,兩條漸近線方程為.
(1)求雙曲線的方程;
(2)雙曲線上有兩個(gè)點(diǎn),直線和的斜率之積為,判別是否為定值,;
(3)經(jīng)過(guò)點(diǎn)的直線且與雙曲線有兩個(gè)交點(diǎn),直線的傾斜角是,是否存在直線(其中)使得恒成立?(其中分別是點(diǎn)到的距離)若存在,求出的值,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在梯形ABCD中,AB∥CD,AD=DC=CB=1,∠BCD=120°,四邊形BFED是以BD為直角腰的直角梯形,DE=2BF=2,平面BFED⊥平面ABCD. (Ⅰ)求證:AD⊥平面BFED;
(Ⅱ)在線段EF上是否存在一點(diǎn)P,使得平面PAB與平面ADE所成的銳二面角的余弦值為 .若存在,求出點(diǎn)P的位置;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= ,方程f2(x)﹣af(x)+b=0(b≠0)有六個(gè)不同的實(shí)數(shù)解,則3a+b的取值范圍是( )
A.[6,11]
B.[3,11]
C.(6,11)
D.(3,11)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等差數(shù)列{an}的前n項(xiàng)和為Sn , 且滿足S4=24,S7=63. (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若 ,求數(shù)列{bn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓 的左焦點(diǎn)左頂點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)已知,是橢圓上的兩點(diǎn),是橢圓上位于直線兩側(cè)的動(dòng)點(diǎn).若,試問(wèn)直線的斜率是否為定值?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知實(shí)數(shù)a,b,c,d滿足 =1,其中e是自然對(duì)數(shù)的底數(shù),則(a﹣c)2+(b﹣d)2的最小值為( )
A.4
B.8
C.12
D.18
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,棱長(zhǎng)為1(單位:)的正方體木塊經(jīng)過(guò)適當(dāng)切割,得到幾何體,已知幾何體由兩個(gè)底面相同的正四棱錐組成,底面平行于正方體的下底面,且各頂點(diǎn)均在正方體的面上,則幾何體體積的取值范圍是________(單位:).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=|x+2|+|x﹣a|,x∈R
(1)若a<0,且log2f(x)>2對(duì)任意x∈R恒成立,求實(shí)數(shù)a的取值范圍;
(2)若a>0,且關(guān)于x的不等式f(x)< x有解,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com