【題目】橢圓的離心率為, 過(guò)點(diǎn), 記橢圓的左頂點(diǎn)為.

(1)求橢圓的方程;

(2)設(shè)垂直于軸的直線交橢圓于兩點(diǎn), 試求面積的最大值;

(3)過(guò)點(diǎn)作兩條斜率分別為的直線交橢圓于兩點(diǎn),且, 求證: 直線恒過(guò)一個(gè)定點(diǎn).

【答案】(1)x2+2y2=1;(2);(3)直線BC恒過(guò)定點(diǎn).

【解析】試題分析:(1)題意列出關(guān)于 、 、的方程組,結(jié)合性質(zhì)求出 、,即可得結(jié)果;(2)設(shè)B(m,n),C(-mn),則SABC×2|m|×|n|=|m|·|n|,根據(jù)點(diǎn) 在橢圓上與基本不等式可得結(jié)果;(3)AByk1(x+1),ACyk2(x+1),

消去y,得(1+2k)x2+4kx+2k-1=0,可得 的坐標(biāo),從而得 的方程,進(jìn)而可得結(jié)果.

試題解析:

(1)由,解得

所以橢圓C的方程為x2+2y2=1.

(2) 解:設(shè)B(mn),C(-mn),則SABC×2|m|×|n|=|m|·|n|,

1=m2+2n22=2|m|·|n|,所以|m|·|n|,

當(dāng)且僅當(dāng)|m|=|n|時(shí)取等號(hào),

從而SABC,即△ABC面積的最大值為.……………… 8分

(3)證明:因?yàn)?/span>A(-1,0),所以AByk1(x+1),ACyk2(x+1),

消去y,得(1+2k)x2+4kx+2k-1=0,解得x=-1

點(diǎn),同理,有k1k2=2,

直線BC的方程為

,即,

所以,得直線BC恒過(guò)定點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)橢圓,定義橢圓的“伴隨圓”方程為;若拋物線的焦點(diǎn)與橢圓C的一個(gè)短軸端點(diǎn)重合,且橢圓C的離心率為

1求橢圓C的方程和“伴隨圓”E的方程;

2過(guò)“伴隨圓”E上任意一點(diǎn)P作橢圓C的兩條切線PAPB,A,B為切點(diǎn),延長(zhǎng)PA與“伴隨圓”E交于點(diǎn)Q,O為坐標(biāo)原點(diǎn).

(i)證明:PA⊥PB;

(ii)若直線OPOQ的斜率存在,設(shè)其分別為,試判斷是否為定值,若是, 求出該值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=sin2x﹣ ,g(x)= sin2x.
(1)求函數(shù)f(x)與g(x)圖象交點(diǎn)的橫坐標(biāo);
(2)若函數(shù)φ(x)= ﹣f(x)﹣g(x),將函數(shù)φ(x)圖象上的點(diǎn)縱坐標(biāo)不變,橫坐標(biāo)擴(kuò)大為原來(lái)的4倍,再將所得函數(shù)圖象向右平移 個(gè)單位,得到函數(shù)h(x),求h(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在棱臺(tái)中, 分別是棱長(zhǎng)為1與2的正三角形,平面平面,四邊形為直角梯形, , 中點(diǎn), , ).

(1)設(shè)中點(diǎn)為 ,求證: 平面;

(2)若到平面的距離為,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,∠ACB為鈍角,AC=BC=1, 且x+y=1,函數(shù) 的最小值為 ,則 的最小值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】袋中裝有圍棋黑色和白色棋子共7枚,從中任取2枚棋子都是白色的概率為. 現(xiàn)有甲、乙兩人從袋中輪流摸取一枚棋子.甲先摸,乙后取,然后甲再取,……,取后均不放回,直到有一人取到白棋即終止. 每枚棋子在每一次被摸出的機(jī)會(huì)都是等可能的.表示取棋子終止時(shí)所需的取棋子的次數(shù).

(1)求隨機(jī)變量的概率分布列和數(shù)學(xué)期望

(2)求甲取到白棋的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,一條寬為1km的兩平行河岸有村莊A和供電站C,村莊BA、C的直線距離都是2kmBC與河岸垂直,垂足為D.現(xiàn)要修建電纜,從供電站C向村莊A、B供電.修建地下電纜、水下電纜的費(fèi)用分別是2萬(wàn)元/km、4萬(wàn)元/km

(1)已知村莊AB原來(lái)鋪設(shè)有舊電纜,但舊電纜需要改造,改造費(fèi)用是0.5萬(wàn)元/km.現(xiàn)決定利用此段舊電纜修建供電線路,并要求水下電纜長(zhǎng)度最短,試求該方案總施工費(fèi)用的最小值;

(2)如圖②,點(diǎn)E在線段AD上,且鋪設(shè)電纜的線路為CEEA、EB.若∠DCEθ(0≤θ),試用θ表示出總施工費(fèi)用y (萬(wàn)元)的解析式,并求y的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】幾個(gè)月前,成都街頭開(kāi)始興起“mobike”、“ofo”等共享單車,這樣的共享單車為很多市民解決了最后一公里的出行難題.然而,這種模式也遇到了一些讓人尷尬的問(wèn)題,比如亂停亂放,或?qū)⒐蚕韱诬囌紴椤八接小钡龋?/span>

為此,某機(jī)構(gòu)就是否支持發(fā)展共享單車隨機(jī)調(diào)查了50人,他們年齡的分布及支持發(fā)展共享單車的人數(shù)統(tǒng)計(jì)如下表:

年齡

受訪人數(shù)

5

6

15

9

10

5

支持發(fā)展

共享單車人數(shù)

4

5

12

9

7

3

(Ⅰ)由以上統(tǒng)計(jì)數(shù)據(jù)填寫(xiě)下面的列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過(guò)0.1的前提下,認(rèn)為年齡與是否支持發(fā)展共享單車有關(guān)系;

年齡低于35歲

年齡不低于35歲

合計(jì)

支持

不支持

合計(jì)

(Ⅱ)若對(duì)年齡在,的被調(diào)查人中各隨機(jī)選取兩人進(jìn)行調(diào)查,記選中的4人中支持發(fā)展共享單車的人數(shù)為,求隨機(jī)變量的分布列及數(shù)學(xué)期望.

參考數(shù)據(jù):

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

參考公式:,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)舉行了一次環(huán)保知識(shí)競(jìng)賽活動(dòng).為了了解本次競(jìng)賽學(xué)生成績(jī)情況,從中抽取了部分學(xué)生的分?jǐn)?shù)(得分取正整數(shù),滿分為100分)作為樣本(樣本容量為n)進(jìn)行統(tǒng)計(jì).按照,,,的分組作出頻率分布直方圖,并作出樣本分?jǐn)?shù)的莖葉圖(圖中僅列出了得分在,的數(shù)據(jù)).

(1)求樣本容量n和頻率分布直方圖中x、y的值;

(2)在選取的樣本中,從競(jìng)賽成績(jī)是80分以上(含80分)的同學(xué)中隨機(jī)抽取2名同學(xué)到市政廣場(chǎng)參加環(huán)保知識(shí)宣傳的志愿者活動(dòng),求所抽取的2名同學(xué)來(lái)自不同組的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案