設(shè)是離散型隨機(jī)變量,,,且a<b,又Eξ=,Dξ=,則a+b的值為(  )
A.B.C.3 D.
C
解:∵Eξ=,Dξ=,,
 ,(a-4 /3 )2×2/ 3 +(b-4/ 3 )2×1 /3 ="2" /9 ,
∴a=1,b=2則 a+b=3
故答案為:3.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

高考數(shù)學(xué)考試中共有10道選擇題,每道選擇題都有4個(gè)選項(xiàng),其中有且僅有一個(gè)是正確的.評(píng)分標(biāo)準(zhǔn)規(guī)定:“在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的,答對(duì)得5分,不答或答錯(cuò)得0分”.某考生每道選擇題都選出了一個(gè)答案,能確定其中有6道題的答案是正確的,而其余題中,有兩道題都可判斷出有兩個(gè)選項(xiàng)是錯(cuò)誤的,有一道題可以判斷一個(gè)選項(xiàng)是錯(cuò)誤的,還有一道題因不理解題意只能亂猜.
試求出該考生的選擇題:
(I)得30分的概率;
(II)得多少分的概率最大;
(III)所得分?jǐn)?shù)的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

甲班有2名男乒乓球選手和3名女乒乓球選手,乙班有3名男乒乓球選手和1名女乒乓球選手,學(xué)校計(jì)劃從甲乙兩班各選2名選手參加體育交流活動(dòng).
(Ⅰ)求選出的4名選手均為男選手的概率.
(Ⅱ)記為選出的4名選手中女選手的人數(shù),求的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

招聘會(huì)上,某公司決定先試用后再聘用小強(qiáng),該公司的甲、乙兩個(gè)部門(mén)各有4個(gè)不同崗位.
(Ⅰ)公司隨機(jī)安排小強(qiáng)在這兩個(gè)部門(mén)中的3個(gè)崗位上進(jìn)行試用,求小強(qiáng)試用的3個(gè)崗位中恰有2個(gè)在甲部門(mén)的概率;
(Ⅱ)經(jīng)試用,甲、乙兩個(gè)部門(mén)都愿意聘用他.據(jù)估計(jì),小強(qiáng)可能獲得的崗位月工資及相應(yīng)概率如下表所示:
甲部門(mén)不同崗位月工資(元)
2200
2400
2600
2800
獲得相應(yīng)崗位的概率
0.4
0.3
0.2
0.1
 
乙部門(mén)不同崗位月工資(元)
2000
2400
2800
3200
獲得相應(yīng)崗位的概率
0.4
0.3
0.2
0.1
 
求甲、乙兩部門(mén)月崗位工資的期望與方差,據(jù)此請(qǐng)幫助小強(qiáng)選擇一個(gè)部門(mén),并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
2012年4月15日,央視《每周質(zhì)量報(bào)告》曝光某省一些廠商用生石灰處理皮革廢料,熬制成工業(yè)明膠,賣(mài)給一些藥用膠囊生產(chǎn)企業(yè),由于皮革在工業(yè)加工時(shí),要使用含鉻的鞣制劑,因此這樣制成的膠囊,往往重金屬鉻超標(biāo),嚴(yán)重危害服用者的身體健康。該事件報(bào)道后,某市藥監(jiān)局立即成立調(diào)查組,要求所有的藥用膠囊在進(jìn)入市場(chǎng)前必須進(jìn)行兩輪檢測(cè),只有兩輪都合格才能進(jìn)行銷(xiāo)售,否則不能銷(xiāo)售,兩輪檢測(cè)是否合格相互沒(méi)有影響。
(1)某藥用膠囊共生產(chǎn)3個(gè)不同批次,經(jīng)檢測(cè)發(fā)現(xiàn)有2個(gè)批次為合格,另1個(gè)批次為不合格,現(xiàn)隨機(jī)抽取該藥用膠囊5件,求恰有2件不能銷(xiāo)售的概率;
(2)若對(duì)某藥用膠囊的3個(gè)不同批次分別進(jìn)行兩輪檢測(cè),藥品合格的概率如下表:
 
第1批次
第2批次
第3批次
第一輪檢測(cè)



第二輪檢測(cè)



 記該藥用膠囊能通過(guò)檢測(cè)進(jìn)行銷(xiāo)售的批次數(shù)為,求的分布列及數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

學(xué)校為綠化環(huán)境,移栽了甲、乙兩種大樹(shù)各2株.設(shè)甲、乙兩種大樹(shù)移栽的成活率分別為,且各株大樹(shù)是否成活互不影響.
(Ⅰ)求移栽的4株大樹(shù)中恰有3株成活的概率;
(Ⅱ)設(shè)移栽的4株大樹(shù)中成活的株數(shù)為,求分布列與期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

甲、乙、丙三人分別獨(dú)立地解一道題,甲做對(duì)的概率是,三人都做對(duì)的概率是,三人全做錯(cuò)的概率是,已知乙做對(duì)這道題的概率大于丙做對(duì)這道題的概率.設(shè)三人中做對(duì)這道題的人數(shù)為,則隨機(jī)變量的數(shù)學(xué)期望     

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題12分)為豐富高三學(xué)生的課余生活,提升班級(jí)的凝聚力,某校高三年級(jí)6個(gè)班(含甲、乙)舉行唱歌比賽.比賽通過(guò)隨機(jī)抽簽方式?jīng)Q定出場(chǎng)順序.
求:(1)甲、乙兩班恰好在前兩位出場(chǎng)的概率;
(2)比賽中甲、乙兩班之間的班級(jí)數(shù)記為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

.將編號(hào)為1,2,3的三個(gè)小球隨意放入編號(hào)為1,2,3的三個(gè)紙箱中,每個(gè)紙箱內(nèi)有且只有一個(gè)小球,稱此為一輪“放球”,設(shè)一輪“放球”后編號(hào)為i(i=1,2,3)的紙箱放入的小球編號(hào)為ai,定義吻合度誤差為=|1-a1|+|2-a2|+|3-a3|。假設(shè)a1,a2,a3等可能地為1、2、3的各種排列,求⑴某人一輪“放球”滿足=2時(shí)的概率。⑵的數(shù)學(xué)期望。

查看答案和解析>>

同步練習(xí)冊(cè)答案