已知函數(shù)
(1)求的解析式及減區(qū)間;
(2)若的最小值。

(1), () (2)最小值為.

解析試題分析:(Ⅰ)令 得, ,所以
,             

,的減區(qū)間為().  
(Ⅱ)由題意 
,
設(shè), .    
當(dāng)時,恒成立,無最大值;
當(dāng)時,由.
上為增函數(shù),在上為減函數(shù).
,
,                  
設(shè),
,
,所以的最小值為.
考點:導(dǎo)數(shù) 函數(shù)的性質(zhì)
點評:本題關(guān)鍵是先利用代入法求出,第二問中關(guān)鍵是合理構(gòu)造函數(shù),利用函數(shù)單調(diào)性求出函數(shù)的最值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)的導(dǎo)函數(shù)是處取得極值,且

(Ⅰ)求的極大值和極小值;
(Ⅱ)記在閉區(qū)間上的最大值為,若對任意的總有
成立,求的取值范圍;
(Ⅲ)設(shè)是曲線上的任意一點.當(dāng)時,求直線OM斜率的最
小值,據(jù)此判斷的大小關(guān)系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

文科(本小題滿分14分)設(shè)函數(shù)。(Ⅰ)若函數(shù)處與直線相切,①求實數(shù),b的值;②求函數(shù)上的最大值;(Ⅱ)當(dāng)時,若不等式對所有的都成立,求實數(shù)m的取值范圍。)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分8分)已知,函數(shù).
(Ⅰ)求的極值(用含的式子表示);
(Ⅱ)若的圖象與軸有3個不同交點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知在區(qū)間上最大值是5,最小值是-11,求的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)(其中為常數(shù)).
(Ⅰ)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(Ⅱ) 當(dāng)時,設(shè)函數(shù)的3個極值點為,且.
證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

函數(shù) 
(1)當(dāng)時,求證:;
(2)在區(qū)間恒成立,求實數(shù)的范圍。
(3)當(dāng)時,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)求函數(shù)的單調(diào)遞減區(qū)間;
(2)若,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知f(x)=x-(a>0),g(x)=2lnx+bx且直線y=2x-2與曲線y=g(x)相切.
(1)若對[1,+)內(nèi)的一切實數(shù)x,小等式f(x)≥g(x)恒成立,求實數(shù)a的取值范圍;
(2)當(dāng)a=l時,求最大的正整數(shù)k,使得對[e,3](e=2.71828是自然對數(shù)的底數(shù))內(nèi)的任意k個實數(shù)x1,x2,,xk都有成立;
(3)求證:

查看答案和解析>>

同步練習(xí)冊答案