【題目】設(shè)不等式確定的平面區(qū)域?yàn)?/span>U,確定的平面區(qū)域?yàn)?/span>V.

1)定義橫、縱坐標(biāo)為整數(shù)的點(diǎn)為整點(diǎn),在區(qū)域U內(nèi)任取3個(gè)整點(diǎn),求這些整點(diǎn)中恰有2個(gè)整點(diǎn)在區(qū)域V內(nèi)的概率;

2)設(shè)集合;集合若從集合A到集合B可以建立m個(gè)不同的映射?從集合B到集合A可以建立n個(gè)不同的映射,求m,n的值.

【答案】1;(2,

【解析】

(1)用列舉法求出平面區(qū)域U的整點(diǎn)的個(gè)數(shù),平面區(qū)域V的整點(diǎn)個(gè)數(shù),再由古典概型概率公式求解;

2)用列舉法化簡集合,再由映射概念求解的值.

:1)由題意可知平面U的整點(diǎn)為,,,,,,,,,共13個(gè);平面V的整點(diǎn)為,,,共5個(gè);則

2)集合,,要得到一個(gè)從集合到集合的映射,需要給集合中的5個(gè)元素在集合中都找到唯一確定的元素,共有種不同的找法,即從集合到集合可以建立243個(gè)不同的映射,同理,從集合到集合可以建立個(gè)不同的映射.

;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了調(diào)查甲、乙兩個(gè)網(wǎng)站受歡迎的程度,隨機(jī)選取了14,統(tǒng)計(jì)上午8:00~10:00各自的點(diǎn)擊量,得到如圖所示的莖葉圖,根據(jù)莖葉圖回答下列問題.

(1)甲、乙兩個(gè)網(wǎng)站點(diǎn)擊量的極差分別是多少?

(2)甲網(wǎng)站點(diǎn)擊量在[10,40]間的頻率是多少?

(3)甲、乙兩網(wǎng)站哪個(gè)更受歡迎?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,已知橢圓經(jīng)過點(diǎn),且其左右焦點(diǎn)的坐標(biāo)分別是,.

1)求橢圓的離心率及標(biāo)準(zhǔn)方程;

2)設(shè)為動(dòng)點(diǎn),其中,直線經(jīng)過點(diǎn)且與橢圓相交于,兩點(diǎn),若的中點(diǎn),是否存在定點(diǎn),使恒成立?若存在,求點(diǎn)的坐標(biāo);若不存在,說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,為了測量某濕地兩點(diǎn)間的距離,觀察者找到在同一直線上的三點(diǎn).從點(diǎn)測得,從點(diǎn)測得,,從點(diǎn)測得.若測得,(單位:百米),則兩點(diǎn)的距離為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐P-ABCD中,ABCD為梯形,AB//CD,BC⊥AB,AB=2,BC=,CD=PC=。

(I)點(diǎn)E在線段PB上,滿足CE//平面PAD,求的值。

(II)已知AC與BD的交點(diǎn)為M,若PM=1,且平面PAC⊥平面ABCD,求二面角P-BC-M平面角的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面真角坐標(biāo)系xOy中,曲線的參數(shù)方程為t為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸,建立根坐標(biāo)系.曲線的極坐標(biāo)方程為

(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;

(2)若曲線與曲線交于M,N兩點(diǎn),直線OMON的斜率分別為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy,已知曲線C由圓弧C1和圓弧C2相接而成,兩相接點(diǎn)M,N均在直線x=5.圓弧C1的圓心是坐標(biāo)原點(diǎn)O,半徑為13;圓弧C2過點(diǎn)A(29,0).

(1)求圓弧C2的方程.

(2)曲線C上是否存在點(diǎn)P,滿足PA=PO?若存在,指出有幾個(gè)這樣的點(diǎn);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左,右焦點(diǎn)分別為F1, F2,直線l1過點(diǎn)F1且垂直于橢圓的長軸,動(dòng)直線l2垂直l1于點(diǎn)P,線段PF2的垂直平分線交l2于點(diǎn)M.

(1)求點(diǎn)M的軌跡的方程;

2)設(shè)x軸交于點(diǎn)Q, 上不同于點(diǎn)Q的兩點(diǎn)R、S,且滿足,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】1)若,,則的取值范圍是______.

2)若,,且,則的取值范圍是______.

3)已知,且,則的最小值是______.

4)已知實(shí)數(shù),若,且,則的最小值______.

5)已知實(shí)數(shù),,若,,則的最小值______.

查看答案和解析>>

同步練習(xí)冊答案