已知
a
=(2sinx,-cos2x),
b
=(6,-2+sinx),
c
=(
1
2
cosx,sinx).其中0≤x≤
π
2

(Ⅰ)若
a
b
,求sinx的值;
(Ⅱ)設(shè)f(x)=
a
•(
b
-
c
)+3
b
2
,求f(x)的最大值.
分析:(Ⅰ)通過
a
b
,推出關(guān)于sinx的表達式,然后根據(jù)x的范圍求出sinx的值.
(Ⅱ)求出f(x)=
a
•(
b
-
c
)+3
b
2
的相關(guān)量,然后求f(x)的表達式,結(jié)合x的范圍求出函數(shù)的最大值.
解答:解:(1)由
a
b

2sinx(-2+sinx)=-6cos2x(2分)
∴-4sinx+2sin2x=-6(1-2sin2x)
∴5sin2x+2sinx-3=0    (sinx+1)(5sinx-3)=0
因為0≤x≤
π
2
.所以sinx=
3
5

(6分)
(2)
b
-
c
=(6-
1
2
cosx,-2)
∴f(x)=2sinx(6-
1
2
cosx)+2cos2x+3[36+(-2+sinx)2]
=12sinx-sinxcosx+2cos2x+108+3sin2x-12sinx+12
=120-
1
2
sin2x+2cos2x+3-
1-cos2x
2

=120+
3
2
-
1
2
sin2x+
1
2
cos2x
=
243
2
-
2
2
sin(2x-
π
4
)
(10分)
因為0≤x≤
π
2
.∴-
π
4
≤2x-
π
4
4

-
2
2
≤sin(2x-
π
4
)≤1
,
f(x)max=
243
2
-
2
2
(-
2
2
)=122
(12分)
點評:本題是中檔題,考查三角函數(shù)的化簡求值,向量平行的應(yīng)用,考查計算能力,注意函數(shù)的最值的求法角的范圍的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(2sinx,m),
b
=(sinx+cosx,1),函數(shù)f(x)=
a
b
(x∈R),若f(x)的最大值為
2

(1)求m的值;
(2)若將f(x)的圖象向左平移n(n>0)個單位后,關(guān)于y軸對稱,求n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(2sinx,1),
b
=(m•cosx-sinx,+1),其中m>0,若f(x)=
a
b
,且最大值
2

(1)求m值.
(2)當x.∈[0,
π
2
]
時,求f(x)值域.
(3)直線3x-y+c=0是否可能和f(x)圖象相切?敘述理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a=(2sinx,1),b=(sinx+cosx,-1),設(shè)f(x)=a•b.
(1)求使f(x)≥1成立的x的取值集合;
(2)由y=f(x)的圖象經(jīng)過怎樣的變換可得到y=
2
sinx(x∈R)
的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知a=(2sinx,1),b=(sinx+cosx,-1),設(shè)f(x)=a•b.
(1)求使f(x)≥1成立的x的取值集合;
(2)由y=f(x)的圖象經(jīng)過怎樣的變換可得到數(shù)學(xué)公式的圖象.

查看答案和解析>>

同步練習(xí)冊答案