已知橢圓的離心率為,短軸一個端點到右焦點的距離為.
(1)求橢圓的方程;
(2)設不與坐標軸平行的直線與橢圓交于兩點,坐標原點到直線的距離為,求面積的最大值.
(1)橢圓的方程為;(2)面積的最大值為

試題分析:(1)求橢圓的方程,可利用待定系數(shù)法求出的值即可,依題意,可得:,從而可得的值,即得橢圓的方程;(2)由于直線l是任意的,故可設其方程為.根據(jù)坐標原點到直線的距離為,可得的關系式,從而將雙參數(shù)問題變?yōu)閱螀?shù)問題.將作為底邊,則的高為常數(shù),所以要使的面積最大,就只需邊最大.將表示出來便可求得的最大值,從而求得的面積的最大值.
試題解析:(1)依題意,可得:
所以,橢圓;
(2)坐標原點到直線的距離為,所以,
聯(lián)立可得:

所以,
由題意,得:,令,所以
,
所以,
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,橢圓的中心為原點,長軸在軸上,離心率,又橢圓上的任一點到橢圓的兩焦點的距離之和為.

(1)求橢圓的標準方程;
(2)若平行于軸的直線與橢圓相交于不同的兩點,過兩點作圓心為的圓,使橢圓上的其余點均在圓外.求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知中心在原點的雙曲線C的一個焦點是F1(-3,0),一條漸近線的方程是
(1)求雙曲線C的方程;
(2)若以k(k≠0)為斜率的直線l與雙曲線C相交于兩個不同的點M, N,且線段MA的垂直平分線與兩坐標軸圍成的三角形的面積為,求k的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知為橢圓的左右焦點,是坐標原點,過作垂直于軸的直線交橢圓于,設 .
(1)證明: 成等比數(shù)列;
(2)若的坐標為,求橢圓的方程;
(3)在(2)的橢圓中,過的直線與橢圓交于、兩點,若,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知拋物線C的頂點為O(0,0),焦點為F(0,1).

(1)求拋物線C的方程;
(2)過點F作直線交拋物線C于A,B兩點,若直線AO,BO分別交直線l:y=x-2于M,N兩點,求|MN|的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓E=1(ab>0),F1(-c,0),F2(c,0)為橢圓的兩個焦點,M為橢圓上任意一點,且|MF1|,|F1F2|,|MF2|構成等差數(shù)列,點F2(c,0)到直線lx的距離為3.
(1)求橢圓E的方程;
(2)若存在以原點為圓心的圓,使該圓的任意一條切線與橢圓E恒有兩個交點A,B,且,求出該圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

中,,給出滿足的條件,就能得到動點的軌跡方程,下表給出了一些條件及方程:
條件
方程
周長為10

面積為10

中,

則滿足條件①、②、③的點軌跡方程按順序分別是 
A. 、   B. 、
C. 、、    D. 、、

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知定點A (p為常數(shù),p>0),Bx軸負半軸上的一個動點,動點M使得|AM|=|AB|,且線段BM的中點Gy軸上.

(1)求動點M的軌跡C的方程;
(2)設EF為曲線C的一條動弦(EF不垂直于x軸),其垂直平分線與x軸交于點T(4,0),當p=2時,求|EF|的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

直線與曲線的交點個數(shù)是      

查看答案和解析>>

同步練習冊答案