【題目】設(shè)拋物線C:x2=2py(p>0)的焦點(diǎn)為F,準(zhǔn)線為l,A∈C,已知以F為圓心,F(xiàn)A為半徑的圓F交l于B,D兩點(diǎn);
(1)若∠BFD=90°,△ABD的面積為 ,求p的值及圓F的方程;
(2)若A,B,F(xiàn)三點(diǎn)在同一直線m上,直線n與m平行,且n與C只有一個公共點(diǎn),求坐標(biāo)原點(diǎn)到m,n距離的比值.

【答案】
(1)解:由對稱性知:△BFD是等腰直角△,斜邊|BD|=2p

點(diǎn)A到準(zhǔn)線l的距離 ,

∵△ABD的面積SABD=

= ,

解得p=2,所以F坐標(biāo)為(0,1),

∴圓F的方程為x2+(y﹣1)2=8


(2)解:由題設(shè) ,則 ,

∵A,B,F(xiàn)三點(diǎn)在同一直線m上,

又AB為圓F的直徑,故A,B關(guān)于點(diǎn)F對稱.

由點(diǎn)A,B關(guān)于點(diǎn)F對稱得:

得: ,直線 , 切點(diǎn)

直線

坐標(biāo)原點(diǎn)到m,n距離的比值為


【解析】(1)由對稱性知:△BFD是等腰直角△,斜邊|BD|=2p點(diǎn)A到準(zhǔn)線l的距離 ,由△ABD的面積SABD= ,知 = ,由此能求出圓F的方程.(2)由對稱性設(shè) ,則 點(diǎn)A,B關(guān)于點(diǎn)F對稱得: ,得: ,由此能求出坐標(biāo)原點(diǎn)到m,n距離的比值.
【考點(diǎn)精析】本題主要考查了圓的標(biāo)準(zhǔn)方程的相關(guān)知識點(diǎn),需要掌握圓的標(biāo)準(zhǔn)方程:;圓心為A(a,b),半徑為r的圓的方程才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是由圓柱與圓錐組合而成的幾何體的三視圖,則該幾何體的表面積為(
A.20π
B.24π
C.28π
D.32π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為研究男女同學(xué)空間想象能力的差異,孫老師從高一年級隨機(jī)選取了20名男生、20名女生,進(jìn)行空間圖形識別測試,得到成績莖葉圖如下,假定成績大于等于80分的同學(xué)為“空間想象能力突出”,低于80分的同學(xué)為“空間想象能力正!保
(1)完成下面2×2列聯(lián)表,

空間想象能力突出

空間想象能力正常

合計

男生

女生

合計


(2)判斷是否有90%的把握認(rèn)為“空間想象能力突出”與性別有關(guān);
(3)從“空間想象能力突出”的同學(xué)中隨機(jī)選取男生2名、女生2名,記其中成績超過90分的人數(shù)為ξ,求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望. 下面公式及臨界值表僅供參考:

P(X2≥k)

0.100

0.050

0.010

k

2.706

3.841

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了研究家用轎車在高速公路上的車速情況,交通部門隨機(jī)對50名家用轎車駕駛員進(jìn)行調(diào)查,得到其在高速公路上行駛時的平均車速情況為:在30名男性駕駛員中,平均車速超過100km/h的有20人,不超過100km/h的有10人.在20名女性駕駛員中,平均車速超過100km/h的有5人,不超過100km/h的有15人.
(Ⅰ)完成下面的列聯(lián)表,并判斷是否有99.5%的把握認(rèn)為平均車速超過100km/h的人與性別有關(guān);

平均車速超過100km/h人數(shù)

平均車速不超過100km/h人數(shù)

合計

男性駕駛員人數(shù)

女性駕駛員人數(shù)

合計

(Ⅱ)以上述數(shù)據(jù)樣本來估計總體,現(xiàn)從高速公路上行駛的大量家用轎車中隨機(jī)抽取3輛,記這3輛車中駕駛員為女性且車速不超過100km/h的車輛數(shù)為ζ,若每次抽取的結(jié)果是相互獨(dú)立的,求ζ的分布列和數(shù)學(xué)期望.
參考公式: ,其中n=a+b+c+d.
參考數(shù)據(jù):

P(K2≥k0

0.150

0.100

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面內(nèi)將點(diǎn)A(2,1)繞原點(diǎn)按逆時針方向旋轉(zhuǎn) ,得到點(diǎn)B,則點(diǎn)B的坐標(biāo)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過曲線C1 =1(a>0,b>0)的左焦點(diǎn)F1作曲線C2:x2+y2=a2的切線,設(shè)切點(diǎn)為M,延長F1M交曲線C3:y2=2px(p>0)于點(diǎn)N,其中曲線C1與C3有一個共同的焦點(diǎn),若|MF1|=|MN|,則曲線C1的離心率為(
A.
B. ﹣1
C. +1
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系xOy中,已知橢圓 的左焦點(diǎn)為F,離心率為 ,過點(diǎn)F且垂直于長軸的弦長為
(I)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)點(diǎn)A,B分別是橢圓的左、右頂點(diǎn),若過點(diǎn)P(﹣2,0)的直線與橢圓相交于不同兩點(diǎn)M,N.
(i)求證:∠AFM=∠BFN;
(ii)求△MNF面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足a1=1,Sn=2an+1 , 其中Sn為{an}的前n項和(n∈N*).
(Ⅰ)求S1 , S2及數(shù)列{Sn}的通項公式;
(Ⅱ)若數(shù)列{bn}滿足 ,且{bn}的前n項和為Tn , 求證:當(dāng)n≥2時,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知中心在原點(diǎn),焦點(diǎn)在x軸上的橢圓的一個焦點(diǎn)為( ,0),(1, )是橢圓上的一個點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)橢圓的上、下頂點(diǎn)分別為A,B,P(x0 , y0)(x0≠0)是橢圓上異于A,B的任意一點(diǎn),PQ⊥y軸,Q為垂足,M為線段PQ中點(diǎn),直線AM交直線l:y=﹣1于點(diǎn)C,N為線段BC的中點(diǎn),如果△MON的面積為 ,求y0的值.

查看答案和解析>>

同步練習(xí)冊答案