9.直線x+y=$\sqrt{3}$a與圓x2+y2=a2+(a-1)2相交于點(diǎn)A、B,點(diǎn)O是坐標(biāo)原點(diǎn),若△AOB是正三角形,則實(shí)數(shù)a=(  )
A.1B.-1C.$\frac{1}{2}$D.-$\frac{1}{2}$

分析 由題意可得,圓心(0,0)到直線x+y=$\sqrt{3}$a的距離等于半徑的$\frac{\sqrt{3}}{2}$倍,再利用點(diǎn)到直線的距離公式解得a的值.

解答 解:由題意可得,圓的半徑為$\sqrt{{a}^{2}+(a-1)^{2}}$,
圓心(0,0)到直線x+y=$\sqrt{3}$a的距離等于半徑的$\frac{\sqrt{3}}{2}$倍,
即$\frac{|0+0-\sqrt{3}a|}{\sqrt{2}}=\frac{\sqrt{3}}{2}•$$\sqrt{{a}^{2}+(a-1)^{2}}$,解得a=$\frac{1}{2}$,
故選C.

點(diǎn)評(píng) 本題主要考查直線和圓相切的性質(zhì),點(diǎn)到直線的距離公式的應(yīng)用,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.在△ABC中,∠ABC=90°,AB=2$\sqrt{3}$,BC=2,P為△ABC內(nèi)一點(diǎn),∠BPC=90°
(1)若PB=1,求PA;
(2)若∠APB=120°,設(shè)∠PBA=α,求tanα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.設(shè)拋物線y2=8x的焦點(diǎn)為F,M是拋物線上一點(diǎn),N(2,2),則|MF|+|MN|的取值范圍是( 。
A.(0,4]B.[4,+∞)C.(0,2]D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.求不等式組解集$\left\{\begin{array}{l}{(2-x)(2x+4)≥0}\\{-3{x}^{2}+2x+1<0}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.如圖,過拋物線C:x2=2py(p>0)的焦點(diǎn)F作直線l與拋物線相交于A,B兩點(diǎn).直線l1∥l,且與拋物線C相切于點(diǎn)P,直線PF交拋物線于另一點(diǎn)Q.已知拋物線C上縱坐標(biāo)為$\frac{3p}{2}$的點(diǎn)M到焦點(diǎn)F的距離為2.
(1)求拋物線C的方程;
(2)求△ABQ的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.在△ABC中,BC=6,CA=8,AB=10,M是邊AB上的動(dòng)點(diǎn)(含A、B),若存在實(shí)數(shù)λ,μ使得$\overrightarrow{CM}$=λ$\overrightarrow{CA}$+μ$\overrightarrow{CB}$,則|λ$\overrightarrow{CA}$-μ$\overrightarrow{CB}$|的最大值是( 。
A.5B.6C.8D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.如圖,曲線C由上半橢圓C1:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{^{2}}$=1(a>b>0,y≥0)和部分拋物線C2:y=-x2+1(y≤0)連接而成,C1、C2的公共點(diǎn)為A,B,其中C1的離心率為$\frac{\sqrt{3}}{2}$.
(1)求a,b的值;
(2)過點(diǎn)B的直線l與C1,C2分別交于P,Q(均異于點(diǎn)A,B),若AP⊥AQ,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.在梯形ABCD中,AD∥BC,∠ABC=90°,AB=a,AD=3a,且∠ADC=arcsin$\frac{{\sqrt{5}}}{5}$,PA⊥平面ABCD,PA=a,則二面角P-CD-A的大小為arctan$\frac{\sqrt{5}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.2015年5月1日世界博覽會(huì)在意大利的米蘭開幕,中國(guó)館為了做好世界博覽會(huì)期間的接待服務(wù)工作,從5名男大學(xué)生和3名女大學(xué)生中選出3人,參加博覽會(huì)的志愿者服務(wù)活動(dòng).
(Ⅰ)求選出的3人中至少1名女生的概率;
(Ⅱ)設(shè)所選3人中女生人數(shù)為ξ,求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案