13.已知圓心為H的圓x2+y2+2x-15=0和定點(diǎn)A(1,0),B是圓上任意一點(diǎn),線(xiàn)段AB的中垂線(xiàn)l和直線(xiàn)BH相交于點(diǎn)M,當(dāng)點(diǎn)B在圓上運(yùn)動(dòng)時(shí),點(diǎn)M的軌跡記為曲線(xiàn)C.
(1)求C的方程;
(2)設(shè)直線(xiàn)m與曲線(xiàn)C交于P,Q兩點(diǎn),O為坐標(biāo)原點(diǎn),若∠POQ=90°,問(wèn)$\frac{1}{|OP{|}^{2}}$+$\frac{1}{|OQ{|}^{2}}$是否為定值?若是求其定值,若不是說(shuō)明理由.

分析 (1)由圓的方程求出圓心坐標(biāo)和半徑,由|MA|+|MH|=|MB|+|MH|=|BH|=4可得點(diǎn)M的軌跡是以A,H為焦點(diǎn),4為長(zhǎng)軸長(zhǎng)的橢圓,則其標(biāo)準(zhǔn)方程可求;
(2)分類(lèi)討論,設(shè)直線(xiàn)OP方程為y=kx(k≠0),與橢圓方程聯(lián)立可得x2,y2.進(jìn)而得到|OP|2,同理得到|OQ|2,即可證明為定值.

解答 解:(1)由x2+y2+2x-15=0,得(x+1)2+y2=42,
∴圓心為H(-1,0),半徑為4,
連接MA,由l是線(xiàn)段AB的中垂線(xiàn),得|MA|=|MB|,
∴|MA|+|MH|=|MB|+|MH|=|BH|=4,
又|AH|=2<4,
故點(diǎn)M的軌跡是以A,H為焦點(diǎn),4為長(zhǎng)軸長(zhǎng)的橢圓,其方程為$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1;
(2)設(shè)直線(xiàn)OP方程為y=kx(k≠0),聯(lián)立橢圓方程,解得${x}^{2}=\frac{12}{3+4{k}^{2}},y=\frac{12{k}^{2}}{3+4{k}^{2}}$,
∴|OP|2=$\frac{12({k}^{2}+1)}{3+4{k}^{2}}$.
同理解得|OQ|2=$\frac{12({k}^{2}+1)}{4+3{k}^{2}}$.
∴$\frac{1}{|OP{|}^{2}}$+$\frac{1}{|OQ{|}^{2}}$=$\frac{7}{12}$,
OP斜率不存在時(shí),|OP|2=3,|OQ|2=4,$\frac{1}{|OP{|}^{2}}$+$\frac{1}{|OQ{|}^{2}}$=$\frac{7}{12}$
綜上所述,$\frac{1}{|OP{|}^{2}}$+$\frac{1}{|OQ{|}^{2}}$=$\frac{7}{12}$是定值.

點(diǎn)評(píng) 本題考查橢圓標(biāo)準(zhǔn)方程的求法,考查了直線(xiàn)與橢圓位置關(guān)系的應(yīng)用,考查學(xué)生的計(jì)算能力,屬中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知正四面體(所有棱長(zhǎng)都相等的三棱錐)的俯視圖如圖所示,其中四邊形ABCD是邊長(zhǎng)為$\sqrt{2}$cm的正方形,則這個(gè)正四面體的主視圖的面積為(  )cm2
A.1B.$\sqrt{2}$C.2D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.函數(shù)f(x)=$\frac{{x}^{2}+5}{\sqrt{{x}^{2}+4}}$(x∈R)的最小值為(  )
A.2B.3C.2$\sqrt{2}$D.2.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.一個(gè)幾何體的三視圖如圖所示(單位:m),則該幾何體的表面積為$55+4\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.解關(guān)于x的不等式ax2-(a+1)x+1>0(a為常數(shù)且a≠0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.等比數(shù)列{an}滿(mǎn)足an>0,n=1,2,…,且a2•an-1=2(n≥2),則當(dāng)n≥2時(shí),log2a1+log2a2+log2a3+log2a4+…+log2an-1+log2an=$\left\{\begin{array}{l}{\frac{n-1}{2}+lo{g}_{2}{a}_{\frac{n}{2}},n為奇數(shù)}\\{\frac{n}{2},n為偶數(shù)}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知$\overrightarrow{a}$=(2cosx,-$\sqrt{3}$sin2x),$\overrightarrow$=(cosx,1),令函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$,
(1)求函數(shù)f(x)的最小正周期和單調(diào)減區(qū)間.
(2)在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,f(A)=-1,a=$\sqrt{7}$,$\overrightarrow{AB}$•$\overrightarrow{AC}$=3,求邊b和c的值(b>c).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知p:|1-$\frac{x-1}{3}$|≤2,q:x2-2x+1-m2≤0(m>0),若¬p是¬q的必要不充分條件,則實(shí)數(shù)m的取值范圍為( 。
A.m>9B.m≥9C.m≥7D.m>7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=cos2x+4sinx${sin^2}({\frac{x}{2}+\frac{π}{4}}$).
(1)將函數(shù)f(2x)的圖象向右平移$\frac{π}{6}$個(gè)單位得到函數(shù)g(x)的圖象,若$x∈[{\frac{π}{12},\frac{π}{2}}]$,求函數(shù)g(x)的值域;
(2)已知a,b,c分別為△ABC中角A,B,C的對(duì)邊,且滿(mǎn)足b=2,f(A)=$\sqrt{2}$+1,$\sqrt{3}$a=2bsinA,B∈(0,$\frac{π}{2}$),求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案