【題目】《國務(wù)院關(guān)于修改〈中華人民共和國個人所得稅法實施條例〉的決定》已于200831日起施行個人所得稅稅率表如下:

級數(shù)

全月應(yīng)納稅所得額

稅率

1

不超過500元的部分

5%

2

超過5002 000元的部分

10%

3

超過2 000元至5 000元的部分

15%

9

超過100 000元的部分

45%

注:本表所示全月應(yīng)納稅所得額為每月收入額減去2 000元后的余額.

(1)若某人20084月份的收入額為4 200求該人本月應(yīng)納稅所得額和應(yīng)納的稅費;

(2)設(shè)個人的月收入額為x應(yīng)納的稅費為y.0<x3 600,試寫出y關(guān)于x的函數(shù)關(guān)系式.

【答案】(1)205元;(2)見解析

【解析】試題分析:(1)先用20084月份的收入減去2000元,求出需要繳稅的部分,然后根據(jù)稅額=繳稅部分×稅率求解.
(2)應(yīng)納稅費由表格,即可得出y關(guān)于x的函數(shù)關(guān)系式.

試題解析:

(1)本月應(yīng)納稅所得額為4 200-2 000=2 200元;

應(yīng)納稅費由表格,得

500×5%+1 500×10%+200×15%=205元.

(2)y=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知以點C為圓心的圓經(jīng)過點A(1,0)B(3,4),且圓心在直線x3y150上.設(shè)點P在圓C上,求PAB的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法:

①將一組數(shù)據(jù)中的每個數(shù)據(jù)都加上或減去同一個常數(shù)后,均值與方差都不變;

②設(shè)有一個回歸方程,變量x增加一個單位時,y平均增加3個單位;

③線性回歸方程必經(jīng)過點

④在吸煙與患肺病這兩個分類變量的計算中,從獨立性檢驗知,有99%的把握認為吸煙與患肺病有關(guān)系時,我們說現(xiàn)有100人吸煙,那么其中有99人患肺。渲绣e誤的個數(shù)是( )

A. 0

B. 1

C. 2

D. 3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)將函數(shù)的圖像向右平移個單位得到函數(shù)的圖像,若,求函數(shù)的值域;

(2)已知,分別為中角的對邊,且滿足,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合M{x|xmmZ},N{x|xnZ},P{x|xpZ},試確定M,N,P之間的關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中

(1)當時,求函數(shù)上的值域;

(2)若函數(shù)上的最小值為3,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是定義在R上的奇函數(shù),其中為自然對數(shù)的底數(shù).

1)求實數(shù)的值;

2)若存在,使得不等式成立,求實數(shù)的取值范圍;

3)若函數(shù)上不存在最值,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知⊙Cx2y22x4y10.

(1)若⊙C的切線在x軸、y軸上截距相等,求切線的方程.

(2)從圓外一點P(x0y0)向圓引切線PM,M為切點,O為原點,若|PM||PO|,求使|PM|最小的P點坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)(其中為常數(shù),).(Ⅰ)求函數(shù)的單調(diào)區(qū)間;(Ⅱ)當時,是否存在實數(shù),使得當時,不等式恒成立?如果存在,求的取值范圍;如果不存在,請說明理由(其中是自然對數(shù)的底數(shù),).

查看答案和解析>>

同步練習(xí)冊答案