已知函數(shù)
(1)當(dāng)時(shí),若,求函數(shù)f(x)的值;
(2)當(dāng)時(shí),求函數(shù)的值域;
(3)把函數(shù)y=f(x)的圖象按向量平移得到函數(shù)g(x)的圖象,若函數(shù)g(x)是偶函數(shù),寫(xiě)出最小的向量的坐標(biāo).
【答案】分析:(1)利用同角三角函數(shù)的基本關(guān)系 由sinx求出cosx,從而求得f(x)的值.
(2)根據(jù)x的范圍,求得角x-的范圍,可得sin(x-)的范圍,利用兩角差的正弦公式化簡(jiǎn)f(x)的解析式,
利用二次函數(shù)的性質(zhì)求的h(x)的值域.
(3)根據(jù)向量平移得到g(x)的解析式 ,要使g(x)是偶函數(shù),即要,
 求得a的解析式,通過(guò)|的解析式可得當(dāng)k=-1時(shí),最。
解答:解:(1)∵,∴,
==
(2)∵,∴,,
=
(3)設(shè),所以,
要使g(x)是偶函數(shù),即要,即,
當(dāng)k=-1時(shí),最小,此時(shí),b=0,即向量的坐標(biāo)為
點(diǎn)評(píng):本題考查同角三角函數(shù)的基本關(guān)系,兩角差的正弦公式,正弦函數(shù)的定義域和值域,判斷g(x)是偶函數(shù) 的條件,
是解題的難點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)

(1)當(dāng)時(shí),若,試求;

(2)若函數(shù)在區(qū)間上是增函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年海南省高考?jí)狠S卷文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分10分)選修4-5:不等式選講

已知函數(shù)

(1)當(dāng)時(shí),求函數(shù)的定義域;

(2)若關(guān)于的不等式的解集是,求的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆河北省高二下學(xué)期期中文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題12分)已知函數(shù)。

(1)當(dāng)時(shí),判斷的單調(diào)性;

(2)若在其定義域內(nèi)為增函數(shù),求正實(shí)數(shù)的取值范圍;

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年上海市寶山區(qū)高三上學(xué)期期末質(zhì)量監(jiān)測(cè)數(shù)學(xué) 題型:解答題

已知函數(shù)

    (1)當(dāng)時(shí),求滿足的取值范圍;

    (2)若的定義域?yàn)镽,又是奇函數(shù),求的解析式,判斷其在R上的單調(diào)性并加以證明.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年深圳市高三第一次調(diào)研考試數(shù)學(xué)理卷 題型:解答題

((本小題滿分14分)

已知函數(shù)

(1)當(dāng)時(shí),如果函數(shù)僅有一個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍;

(2)當(dāng)時(shí),試比較的大。

(3)求證:).

 

查看答案和解析>>

同步練習(xí)冊(cè)答案