如圖,PDCE為矩形,ABCD為梯形,平面PDCE⊥平面ABCD,∠BAD=∠ADC=90°,AB=AD=CD=1,PD=.

(1)若M為PA中點,求證:AC∥平面MDE;
(2)求直線PA與平面PBC所成角的正弦值;
(3)在線段PC上是否存在一點Q(除去端點),使得平面QAD與平面PBC所成銳二面角的大小為?

(1)詳見解析;(2);(3)上存在滿足條件.

解析試題分析:(1)條件中出現(xiàn)了中點,需要證明的結論為線面平行,因此可以考慮構造三角形中位線證明線線平行,因此在矩形中,連結,則點的中點.則的中位線,從而,又平面平面可知平面;(2)題中出現(xiàn)了線面垂直,因此可以考慮建立空間直角坐標系利用空間向量求解,可以為原點,所在的直線分別為
軸,建立空間直角坐標系,根據(jù)條件中數(shù)據(jù),可先寫出點的坐標:

從而可以得到向量的坐標:,因此可求得平面的法向量為,設直線與平面所成角為,利用即可求得;
(3)假設存在滿足已知條件的,由,得,可分別求得平面的法向量為,再由平面的法向量,則由兩平面所成銳二面角大小為可以得到關于的方程:,可解得(舍去),方程有解,即說明上存在滿足條件.
試題解析:(1)如圖,在矩形中,連結,則點的中點.在中,點的中點,點的中點,∴,又∵平面平面,∴平面;
(2)由,則,由平面平面且平面平面,得平面,∴,又矩形為原點,所在的直線分別為軸,建立空間直角坐標系,則

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,在多面體ABCDEF中,底面ABCD是邊長為2的正方形,四邊形BDEF是矩形,平面BDEF 平面ABCD,BF=3,G、H分別是CE和CF的中點.
(Ⅰ)求證:AF//平面BDGH;
(Ⅱ)求
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知四棱錐P-ABCD,底面ABCD為矩形,側棱PA⊥平面ABCD,其中BC=2AB=2PA=6,M、N為側棱PC上的兩個三等分點

(1)求證:AN∥平面 MBD;  
(2)求異面直線AN與PD所成角的余弦值;
(3)求二面角M-BD-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,平面平面,四邊形為矩形,的中點,.(1)求證:;(2)若與平面所成的角為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知△ABC是邊長為l的等邊三角形,D、E分別是AB、AC邊上的點,AD = AE,F(xiàn)是BC的中點,AF與DE交于點G,將△ABF沿AF折起,得到三棱錐A-BCF,其中
(1)證明:DE∥平面BCF;
(2)證明:CF⊥平面ABF;
(3)當時,求三棱錐F-DEG的體積V.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在斜三棱柱中,側面,,,底面是邊長為的正三角形,其重心為點,是線段上一點,且

(1)求證:側面;
(2)求平面與底面所成銳二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖4,四邊形為正方形,平面,于點,,交于點.

(1)證明:平面;
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在四棱錐中,上一點,面,四邊形為矩形 ,,
(1)已知,且∥面,求的值;
(2)求證:,并求點到面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

.體積為的球內(nèi)有一個內(nèi)接正三棱錐,球心恰好在底面正△內(nèi),一個動點從點出發(fā)沿球面運動,經(jīng)過其余三點后返回,則經(jīng)過的最短路程為__________

查看答案和解析>>

同步練習冊答案