18.已知命題p:A={x|a-1<x<a+1,x∈R},命題q:B={x|x2-4x+3≥0}.若非q是p的必要條件,求實(shí)數(shù)a的取值范圍.

分析 根據(jù)不等式的解法求出命題p,q的等價(jià)條件,然后利用必要條件的定義,即可求a的取值范圍.

解答 解:∵命題p:A={x|a-1<x<a+1,x∈R},
命題q:B={x|x2-4x+3≥0}.
非q:{x|1<x<3,x∈R},
∵非q是p的必要條件
則$\left\{\begin{array}{l}{a-1≥1}\\{a+1≤3}\end{array}\right.$
可得a=2
∴實(shí)數(shù)a的取值范圍:a=2.

點(diǎn)評 本題主要考查充分條件和必要條件的應(yīng)用,利用不等式的性質(zhì)求出命題p,q的等價(jià)條件是解決本題的關(guān)鍵

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.在銳角△ABC中,已知$AB=2\sqrt{3},BC=3$,其面積${S_{△ABC}}=3\sqrt{2}$,則△ABC的外接圓面積為$\frac{27π}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,要設(shè)計(jì)一張矩形廣告牌,該廣告牌含有大小相等的左右兩個(gè)矩形欄目(即圖中陰影部分),這兩欄的面積之和為18000cm2,四周空白的寬度為10cm,兩欄之間的中縫空白的寬度為5cm,設(shè)廣告牌的高為xcm,寬為ycm
(1)試用x表示y;
(2)用x表示廣告牌的面積S(x);
(2)廣告牌的高取多少時(shí),可使廣告牌的面積S(x)最?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.定義在R上的函數(shù)f(x)既是奇函數(shù)又是周期函數(shù),若f(x)的最小正周期是π,且當(dāng)$x∈[0,\frac{π}{2})$時(shí),f(x)=sinx,則$f(\frac{8}{3}π)$的值為( 。
A.$\frac{1}{2}$B.$-\frac{{\sqrt{3}}}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.函數(shù)y=x2(x-3)的單調(diào)遞減區(qū)間是( 。
A.(-∞,0)B.(2,+∞)C.(0,2)D.(-2,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知正數(shù)數(shù)列{an}滿足:Sn=n2+2n-2,其中Sn為數(shù)列{an}的前n項(xiàng)和.
(1)求數(shù)列{an}的通項(xiàng)an; 
(2)令bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,求{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)f(x)=ax2+x(a≠0)與$g(x)={(\frac{a+1}{a})}^{x}$在同一坐標(biāo)系中的圖象可能是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知橢圓C的左,右焦點(diǎn)坐標(biāo)分別為(-2,0),(2,0),離心率為$\frac{\sqrt{2}}{2}$,若P為橢圓C上的一點(diǎn),過點(diǎn)P垂直于y軸的直線交y軸于點(diǎn)Q,M為線段QP的中點(diǎn).點(diǎn)(1,$\frac{3}{2}$)在橢圓C上.
(1)求橢圓C短軸長;
(2)求點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=lnx+x2
(1)求函數(shù)h(x)=f(x)-3x的極值;
(2)若函數(shù)g(x)=f(x)-ax在定義域內(nèi)為增函數(shù),求實(shí)數(shù)a的取值范圍;
(3)設(shè)F(x)=2f(x)-3x2-kx(k∈R),若函數(shù)F(x)存在兩個(gè)零點(diǎn)m,n(0<m<n),且x0=$\frac{m+n}{2}$,問:函數(shù)F(x)在(x0,F(xiàn)(x0))處的切線能否平行于x軸?若能,求出該切線方程;若不能,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案