如果有窮數(shù)列a1,a2,a3,…,am(m為正整數(shù))滿足條件a1=am,a2=am-1,…,am=a1,即ai=am-i+1(i=1,2,…,m),我們稱其為“對稱數(shù)列”.例如,數(shù)列1,2,5,2,1與數(shù)列8,4,2,2,4,8都是“對稱數(shù)列”.
(1)設{bn}是7項的“對稱數(shù)列”,其中b1,b2,b3,b4是等差數(shù)列,且b1=2,b4=11.依次寫出{bn}的每一項;
(2)設{cn}是49項的“對稱數(shù)列”,其中c25,c26,…,c49是首項為1,公比為2的等比數(shù)列,求{cn}各項的和S;
(3)設{dn}是100項的“對稱數(shù)列”,其中d51,d52,…,d100是首項為2,公差為3的等差數(shù)列.求{dn}前n項的和Sn(n=1,2,…,100).
【答案】分析:(1)由b1,b2,b3,b4為等差數(shù)列,且b1=2,b4=11,先求b1,b2,b3,b4,然后由對稱數(shù)列的特點可寫出數(shù)列的各項.
(2)由c25,c26,…,c49是首項為1,公比為2的等比數(shù)列,先求出c25,c26,…,c49通項,結合對稱數(shù)列的對應項相等的特點,可知前面的各項,結合等比數(shù)列的求和公式可求出數(shù)列的和
(3)由d51,d52,…,d100是首項為2,公差為3的等差數(shù)列,可求該數(shù)列d51,d52,…,d100的通項,由對稱數(shù)列的特點,結合等差數(shù)列的特點,求數(shù)列的和
解答:解:(1)設數(shù)列{bn}的公差為d,則b4=b1+3d=2+3d=11,解得d=3,
∴?數(shù)列{bn}為2,5,8,11,8,5,2.
(2)S=c1+c2+…+c49=2(c25+c26+…+c49)-c25=2(1+2+22+…+224)-1=2(225-1)-1=226-3=67108861.
(3)d51=2,?d100=2+3×(50-1)=149.
由題意得d1,d2,,d50是首項為149,公差為-3的等差數(shù)列.
當n≤50時,Sn=d1+d2+…+dn=
當51≤n≤100時,Sn=d1+d2+…+dn=S50+(d51+d52+…+dn
==
綜上所述,
點評:本題以新定義對稱數(shù)列為切入點,運用的知識都是數(shù)列的基本知識:等差數(shù)列的通項及求和公式,等比數(shù)列的通項及求和公式,還體現(xiàn)了分類討論在解題中的應用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如果有窮數(shù)列a1,a2,a3,…,am(m為正整數(shù))滿足a1=am,a2=am-1,…,am=a1.即ai=am-i+1(i=1,2,…,m),我們稱其為“對稱數(shù)列“例如,數(shù)列1,2,5,2,1與數(shù)列8,4,2,2,4,8都是“對稱數(shù)列”.設{bn}是項數(shù)為2m(m>1,m∈N*)的“對稱數(shù)列”,并使得1,2,22,23,…,2m-1依次為該數(shù)列中連續(xù)的前m項,則數(shù)列{bn}的前2010項和S2010可以是
(1)22010-1     (2)21006-2       (3)2m+1-22m-2010-1
其中正確命題的個數(shù)為(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果有窮數(shù)列a1,a2,…,an(n∈N*),滿足條件:a1=an,a2=an-1,…,an=a1,即ai=an-i+1(i=1,2,…,n),我們稱其為“對稱數(shù)列”.例如:數(shù)列1,2,3,4,3,2,1就是“對稱數(shù)列”.已知數(shù)列bn是項數(shù)為不超過2m(m>1,m∈N*)的“對稱數(shù)列”,并使得1,2,22,…,2m-1依次為該數(shù)列中前連續(xù)的m項,則數(shù)列bn的前2008項和S2008可以是:①22008-1;②2(22008-1);③3•2m-1-22m-2009-1;④2m+1-22m-2008-1.
其中命題正確的個數(shù)為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果有窮數(shù)列a1,a2,…,an(n∈N*)滿足條件:a1=an,a2=an-1,…,an=a1,即ai=an-i+1,(i=1,2,…,n)我們稱其為“對稱數(shù)列”.例如:數(shù)列1,2,3,3,2,1 和數(shù)列1,2,3,4,3,2,1都為“對稱數(shù)列”.已知數(shù)列{bn}是項數(shù)不超過2m(m>1,m∈N*)的“對稱數(shù)列”,并使得1,2,22,…,2m-1依次為該數(shù)列中連續(xù)的前m項,則數(shù)列{bn}的前2009項和S2009所有可能為:①22009-1  ②2(22009-1)③3•2m-1-22m-2010-1  ④2m+1-22m-2009-1;其中正確的有( 。﹤.
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果有窮數(shù)列a1a2,…,an(n∈N*)滿足條件:a1=an,a2=an-1,…,an=a1,即ai=an-i+1,(i=1,2,…,n)我們稱其為“對稱數(shù)列”.例如:數(shù)列1,2,3,3,2,1 和數(shù)列1,2,3,4,3,2,1都為“對稱數(shù)列”.已知數(shù)列{bn}是項數(shù)不超過2m(m>1,m∈N*)的“對稱數(shù)列”,并使得1,2,22,…,2m-1依次為該數(shù)列中連續(xù)的前m項,則數(shù)列{bn}的前2009項和S2009所有可能的取值的序號為( 。
①22009-1   ②2(22009-1)③3•2m-1-22m-2010-1   ④2m+1-22m-2009-1.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年江西省高三第五次月考理科數(shù)學 題型:填空題

如果有窮數(shù)列a1,a2,…an(a∈N*)滿足條件:,我們稱

其為“對稱數(shù)列”,例如:數(shù)列1,2,3,3,2,1和數(shù)列1,2,3,4,3,2,1都為“對稱數(shù)列”。已知數(shù)列{bn}是項數(shù)不超過2m(m>1,m∈N*)的“對稱數(shù)列”,并使得1,2,22,……,2m-1依次為該數(shù)列中連續(xù)的前m項,則數(shù)列的前2009項和S2009所有可能的取值的序號為            。

①  22009—1    ②2·(22009—1)    ③3×2m-1—22m-2010—1    ④2m+1—22m-2009—1

 

查看答案和解析>>

同步練習冊答案