如圖,直線y=kx+b與橢圓
x2
4
+y2
=1交于A,B兩點,記△AOB的面積為S.
(I)求在k=0,0<b<1的條件下,S的最大值;
(Ⅱ)當(dāng)|AB|=2,S=1時,求直線AB的方程.
(Ⅰ)設(shè)點A的坐標(biāo)為(x1,b),點B的坐標(biāo)為(x2,b),
x2
4
+b2=1
,解得x1,2=±2
1-b2
,
所以S=
1
2
b•|x1-x2|
=2b•
1-b2
≤b2+1-b2=1.
當(dāng)且僅當(dāng)b=
2
2
時,S取到最大值1.

(Ⅱ)由
y=kx+b
x2
4
+y2=1

(k2+
1
4
)x2+2kbx+b2-1=0
,①
△=4k2-b2+1,
|AB|=
1+k2
•|x2-x1|
=
1+k2
4k2-b2+1
1
4
+k2
=2
.②
設(shè)O到AB的距離為d,則d=
2S
|AB|
=1
,
又因為d=
|b|
1+k2
,
所以b2=k2+1,代入②式并整理,得k4-k2+
1
4
=0
,
解得k2=
1
2
,b2=
3
2
,代入①式檢驗,△>0,
故直線AB的方程是y=
2
2
x+
6
2
y=
2
2
x-
6
2
y=-
2
2
x+
6
2
,或y=-
2
2
x-
6
2
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知橢圓E1方程為
x2
a2
+
y2
b2
=1(a>b>0)
,圓E2方程為x2+y2=a2,過橢圓的左頂點A作斜率為k1直線l1與橢圓E1和圓E2分別相交于B、C.
(Ⅰ)若k1=1時,B恰好為線段AC的中點,試求橢圓E1的離心率e;
(Ⅱ)若橢圓E1的離心率e=
1
2
,F(xiàn)2為橢圓的右焦點,當(dāng)|BA|+|BF2|=2a時,求k1的值;
(Ⅲ)設(shè)D為圓E2上不同于A的一點,直線AD的斜率為k2,當(dāng)
k1
k2
=
b2
a2
時,試問直線BD是否過定點?若過定點,求出定點坐標(biāo);若不過定點,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線方程為y2=8x.直線l1過拋物線的焦點F,且傾斜角為45°,直線l1與拋物線相交于C、D兩點,O為原點.
(1)寫出直線l1方程
(2)求CD的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知點P(-1,
3
2
)是橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)上一點,F(xiàn)1、F2分別是橢圓C的左、右焦點,O是坐標(biāo)原點,PF1⊥x軸.
①求橢圓C的方程;
②設(shè)A、B是橢圓C上兩個動點,滿足
PA
+
PB
PO
(0<λ<4,且λ≠2)求直線AB的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,M是拋物線y2=x上的一個定點,動弦ME、MF分別與x軸交于不同的點A、B,且|MA|=|MB|.證明:直線EF的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

以橢圓
x2
16
+
y2
4
=1
內(nèi)的點M(1,1)為中點的弦所在直線方程為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的兩個焦點為F1,F(xiàn)2,點P在橢圓C上,且PF1⊥F1F2,|PF1|=
4
3
,|PF2|=
14
3

(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線l過點M(-2,1),交橢圓C于A,B兩點,且M恰是A,B中點,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知直線l:y=3x+2過拋物線y=ax2(a>0)的焦點.
(1)求拋物線方程;
(2)設(shè)拋物線的一條切線l1,若l1l,求切點坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)點P在曲線y=x2上,從原點向A(2,4)移動,如果直線OP,曲線y=x2及直線x=2所圍成的面積分別記為S1、S2
(Ⅰ)當(dāng)S1=S2時,求點P的坐標(biāo);
(Ⅱ)當(dāng)S1+S2有最小值時,求點P的坐標(biāo)和最小值.

查看答案和解析>>

同步練習(xí)冊答案