在空間中,設(shè)
是三條不同的直線,
是兩個不同的平面,在下列命題:
①若
兩兩相交,則
確定一個平面
②若
,且
,則
③若
,且
,則
④若
,且
,則
其中正確的命題的個數(shù)是( )
試題分析:當(dāng)
相交于同一點時,則
不在同一個平面上,故命題①錯誤;若
,且
,則
或
,故命題②錯誤;根據(jù)面面垂直的性質(zhì)可知命題③正確;若
,且
,則
或
,故命題④錯誤
點評:熟練掌握空間中的線面定理是解決空間線面問題判斷試題的關(guān)鍵
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知斜三棱柱
的各棱長均為2, 側(cè)棱
與底面
所成角為
,且側(cè)面
底面
.
(1)證明:點
在平面
上的射影
為
的中點;
(2)求二面角
的大;
(3)求點
到平面
的距離.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
三棱柱
的側(cè)棱與底面邊長都相等,
在底面
內(nèi)的射影為
的中心
,則
與底面
所成角的正弦值等于( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題滿分12分)如圖,在多面體
ABCDE中,
,
,
是邊長為2的等邊三角形,
,
CD與平面
ABDE所成角的正弦值為
.
(1)在線段
DC上是否存在一點
F,使得
,若存在,求線段
DF的長度,若不存在,說明理由;
(2)求二面角
的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分10分)
如圖,在棱長為3的正方體
中,
.
⑴求兩條異面直線
與
所成角的余弦值;
⑵求平面
與平面
所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知
是兩條不同的直線,
是兩個不重合的平面,給出下列命題:
①若
,則
②若
則
;
③若
則
; ④若
則
;
其中正確命題的個數(shù)為 ( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題滿分12分)
如圖,在四棱錐P—ABCD中,底面ABCD為直角梯形,AD∥BC,
BAD=90°,PA
底面ABCD,且PA=AD=AB=2BC=2,M、N分別為PC、PB的中點.
(Ⅰ)求證:PB
平面ADMN;
(Ⅱ)求四棱錐P-ADMN的體積.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
在三棱錐P-ABC中,PA⊥平面ABC,∠BAC=90°,D、E、F分別是棱AB、BC、CP的中點,AB=AC=1,PA=2,則直線PA與平面DEF所成角的正弦值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分13分)
如圖1,在等腰梯形
中,
,
,
,
為
上一點,
,且
.將梯形
沿
折成直二面角
,如圖2所示.
(Ⅰ)求證:平面
平面
;
(Ⅱ)設(shè)點
關(guān)于點
的對稱點為
,點
在
所在平面內(nèi),且直線
與平面
所成的角為
,試求出點
到點
的最短距離.
查看答案和解析>>