【題目】已知函數(shù).
(1),求函數(shù)的單調(diào)區(qū)間:
(2)對于任意,不等式恒成立,求實數(shù)的取值范圍.
【答案】(1)見解析(2)
【解析】
(1)求導(dǎo)后,按照、、與分類,分別解出不等式,即可得解;
(2)轉(zhuǎn)化條件得對于任意,不等式恒成立,設(shè),則,設(shè),求導(dǎo)后可得在上單調(diào)遞增,進而可得,使得,即,則,設(shè),求導(dǎo)后可得在上單調(diào)遞增,即可證,代入求出后,即可得解.
(1)由題意,
則,
(i)當(dāng)時,的解集為,則的單調(diào)增區(qū)間為和,單調(diào)減區(qū)間為;
(ii)當(dāng)時,,則的單調(diào)增區(qū)間為,無單調(diào)減區(qū)間;
(iii)當(dāng)時,的解集為,則的單調(diào)增區(qū)間為和,單調(diào)減區(qū)間為;
(iiii)當(dāng)時,的解集為,則的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為.
(2)由已知,問題等價于對于任意,不等式恒成立,
設(shè),則,
設(shè),則,
在上,,單調(diào)遞增,
又,,所以,
所以,使得,即,
在上,,單調(diào)遞減;
在上,,單調(diào)遞增;
所以,
又有,
設(shè),則有和,
所以在上,單調(diào)遞增,所以,
所以,
故實數(shù)的取值范圍為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系xOy中,曲線C1的參數(shù)方程為(t為參數(shù)),曲線C2的參數(shù)方程為(α為參數(shù)),以坐標原點為極點.x軸正半軸為極軸建立極坐標系.
(Ⅰ)求曲線C1的普通方程和曲線C2的極坐標方程;
(Ⅱ)射線與曲線C2交于O,P兩點,射線與曲線C1交于點Q,若△OPQ的面積為1,求|OP|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線,與圓有且只有兩個公共點.
(1)求拋物線的方程;
(2)經(jīng)過的動直線與拋物線交于兩點,試問在直線上是否存在定點,使得直線的斜率之和為直線斜率的倍?若存在,求出定點;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正方體中,點E是棱的中點,點F是線段上的一個動點.有以下三個命題:
①異面直線與所成的角是定值;
②三棱錐的體積是定值;
③直線與平面所成的角是定值.
其中真命題的個數(shù)是( )
A. 3 B. 2 C. 1 D. 0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,動直線交拋物線于A,B兩點.
(1)若,證明直線過定點,并求出該定點;
(2)點M為的中點,過點M作與y軸垂直的直線交拋物線于C點;點N為的中點,過點N作與y軸垂直的直線交拋物線于點P.設(shè)△的面積,△的面積為.
(i)若過定點,求使取最小值時,直線的方程;
(ii)求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱ABC﹣A1B1C1中,AA1⊥平面ABC,∠BAC=90°,AB=BC=2,D,E分別為AA1,B1C的中點.
(1)證明:DE⊥平面BCC1B1;
(2)若直線BE與平面AA1B1B所成角為30°,求二面角C﹣BD﹣E的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,曲線C的參數(shù)方程為(為參數(shù),).以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,直線l的圾坐標方,且直線l與曲線C相交于A,B兩點.
(1)求曲線C的普通方程和l的直角坐標方程;
(2)若,點滿足,求此時r的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,設(shè)函數(shù),.
(1)試討論的單調(diào)性;
(2)設(shè)函數(shù),是否存在實數(shù),使得存在兩個極值點,,且滿足?若存在,求的取值范圍;若不存在,請說明理由.
注:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com